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EXECUTIVE SUMMARY 

Data on pedestrian activity is useful for multimodal transportation planning, traffic safety 

analyses, and health impact assessments, but traditional data collection methods are not able to 

efficiently capture data on walking continuously for many locations. One promising and 

ubiquitous data source is information on pedestrian detections and actuations recorded in high-

resolution traffic-signal-controller data logs. A couple of studies have investigated these datasets 

as proxies for pedestrian activity, but they have only done this for single locations. Every time a 

pedestrian push button is pressed in the state of Utah, this activity is recorded, and UDOT 

archives these traffic signal pedestrian actuation data for use in its Automated Traffic Signal 

Performance Measures (ATSPM) system. The overall goal of this research project was to explore 

the use of traffic signal data to develop estimates of pedestrian activity at signalized 

intersections. To achieve this goal, this project had three objectives: to identify patterns of 

pedestrian activity, develop methods to estimate pedestrian crossing volumes from signal data, 

and create a prototype visualization.  

First, we obtained one year (July 2017 through June 2018) of data from 1,522 Utah traffic 

signals and calculated six “pedestrian activity metrics” (PAMs) for each hour of an average 

week. Then, we applied time series clustering to two different PAMs, and through cross-

classification identified seven distinct patterns of hourly and weekly pedestrian activity. These 

seven typologies varied by the magnitude of their peak hours (high, medium, and low) as well as 

the shape and number (one or two) of weekday peak hours. The realism of the typologies was 

validated against built-environment and locational characteristics.  

Second, we used these typologies to randomly select 90 Utah signals for in-depth study 

and data collection. Specifically, we utilized UDOT traffic cameras to record at least 24 hours of 

video of each crossing at every studied signal. Then, we watched the videos and recorded the 

timestamp and details of pedestrian crossing events, to allow us to match the observed crossings 

to traffic signal data from the ATSPM system. In total, we recorded more than 10,000 hours of 

video of 320 crosswalks, and manually counted almost 175,000 pedestrians crossing at 

intersections. Next, we estimated five (quadratic or piecewise linear) regression models— 

segmented by pedestrian activity, cycle length, and pedestrian recall—to predict hourly 
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pedestrian crossing volumes from processed measures of pedestrian calls and pedestrian 

detections. Overall, our model results predicted pedestrian crossing volumes remarkably well, 

with strong correlations (0.84) and small error (+/- 3.0 on average), which is notable given the 

large sample size (orders of magnitude more data than had previously been assembled on this 

topic), variety of locations studied, and the few predictors used.  

Third, we developed a prototype online dashboard to interactively visualize pedestrian 

signal data (raw and estimated volumes) in map, figure, and table formats.  

Overall, our results demonstrate the validity of using pedestrian data from traffic signals 

to estimate levels of pedestrian activity. As a result, using traffic signal data and our models, 

estimates of pedestrian volumes can be generated for various time periods/intervals and in 

hundreds if not thousands of locations throughout Utah, and also in other states that use a similar 

ATSPM system. This novel source of pedestrian big data can now be used for a variety of 

important transportation activities, including as measures of exposure in pedestrian safety 

analyses, to help prioritize pedestrian infrastructure investments, and to relate walking levels 

with weather, air quality, and the built environment, among other tasks. We also offer 

recommendations for future research and implementation.  
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1.0  INTRODUCTION 

1.1  Problem Statement 

Multimodal transportation planning, traffic safety analyses, and health impact 

assessments require information on how many people are walking in various locations 

throughout the day. However, traditional data collection methods for levels of pedestrian activity 

are insufficient for these purposes. Manual intersection or street segment counts are time 

consuming and often infeasible to conduct over long periods of time. Instruments such as 

infrared counters can record continuous data on trail users, but they are costly to deploy across 

multiple locations.  

One potential data source that is relatively ubiquitous in both time and space (available 

24/7 at many intersections) is the high-resolution data logs from traffic signal controllers. Every 

time a pedestrian push button is pressed in the state of Utah, this activity is recorded, and UDOT 

archives these traffic signal pedestrian actuation data for use in its Automated Traffic Signal 

Performance Measures (ATSPM) system. The use of pedestrian signal data is a potentially rich 

source of information about levels of pedestrian activity.  

Nevertheless, obstacles must be overcome before pedestrian actuations can be 

successfully used as proxies for intersection pedestrian volumes. These include: analysis of 

pedestrian actuation patterns for different types of signalized intersections, validation of 

pedestrian actuation data against observed pedestrian counts, and development of conversion 

factors to translate actuations into levels of pedestrian activity (volumes). This research project 

tackles these obstacles to develop methods that can transform pedestrian traffic signal data into 

valuable information on walking activity levels, which will be useful for pedestrian planning as 

well as health and safety analyses.  

1.2  Objectives 

This project explores the use of continuous pedestrian actuation data from the Automated 

Traffic Signal Performance Measures (ATSPM) system to develop estimates of pedestrian 

activity. Towards this overall aim, this project has three specific objectives:  
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1. Identify patterns of pedestrian activity at traffic signals.  

2. Develop methods to estimate pedestrian volumes from signal data.  

3. Create a prototype to visualize pedestrian signal activity.  

1.3  Scope 

This project accomplishes these objectives through the following major tasks:  

1. Assemble pedestrian data from traffic signals throughout Utah.  

2. Analyze assembled data and identify traffic signal typologies based on pedestrian activity 

patterns and traffic signal settings.  

3. Collect multi-day data on observed pedestrian counts at a sample of intersections using 

UDOT’s overhead video cameras.  

4. Compare counts to actuations, and use regression models to develop factoring methods 

that estimate pedestrian intersection crossing volumes.  

5. Create a prototype online tool and graphical interface that visualizes estimated levels of 

pedestrian activity.  

1.4  Report Outline 

Section 1.0 introduces the project and its motivations, objectives, and major tasks. 

Section 2.0 provides background material on the research topic and methods, including existing 

work using traffic signal data for pedestrian analysis, cluster analysis methods, and information 

about linear regression. Section 3.0 describes the data collection process: downloading traffic- 

signal-controller log data, creating pedestrian activity metrics, processing those data, recording 

video data, counting pedestrian crossings from the videos, and assembling all of the data 

together. Section 4.0 reports the data evaluation/analysis, including the cluster analysis results, 

the development of factoring methods to estimate pedestrian crossing volumes from pedestrian 

signal data, and the creation of a prototype visualization. Section 5.0 summarizes the report by 

highlighting the major findings, noting limitations, and outlining potential steps for future work. 

Section 6.0 provides recommendations for implementation of the research findings.   
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2.0  RESEARCH METHODS 

2.1  Overview 

This chapter first presents a brief literature review on the use of traffic signal data for 

pedestrian activity analysis. A couple of studies have tested using pedestrian traffic signal 

actuations as a proxy for pedestrian volumes, with success but only for individual sites. In order 

for these rich data to be used for this purpose, we must replicate these studies in a larger number 

and variety of locations. Before doing so, it is prudent to classify the large number of signals into 

smaller groups or typologies, based on pedestrian activity patterns, to ensure our findings are 

widely generalizable. Thus, this chapter describes the details of one machine learning method 

used for determining similar groups of elements: time series clustering. Finally, we summarize 

the methods of linear regression that are used to find the best factors to convert pedestrian signal 

data to estimated pedestrian volumes.  

2.2  Traffic Signals and Pedestrians 

Pedestrian data is essential for many transportation engineering, planning, and research 

efforts. Pedestrian volume is a necessary measure of exposure in pedestrian safety analyses and 

could be a useful measure of physical activity in health impact assessments. Quantifying walking 

levels would be useful for prioritizing investments, designing infrastructure, and completing 

other important multimodal transportation planning and operational activities. All of these tasks 

require information on how many people are walking in various locations throughout the day. 

Unfortunately, traditional data collection methods for levels of walking activity are 

insufficient for efficiently collecting pedestrian data in many locations over long time periods. 

Manual counts can be done in-person in real time, or after the fact if video cameras have been 

used. Although accurate and feasible across many sites, manual counts are time consuming and 

costly (mostly due to many person-hours of effort), so they are most appropriate for relatively 

short durations (FHWA, 2016). Alternatively, various technology-based automated counting 

methods exist, including passive infrared, active infrared, radar, seismic, and pressure sensors. 

Automated methods are best over long durations and for identifying systematic variations and 
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the impacts of weather and special events, but they often involve larger up-front costs (for 

equipment, etc.) thus limiting the number of locations where they can be deployed; they also 

benefit from periodic validation using manual count methods (FHWA, 2016; Ryus et al., 2014). 

Newer and emerging methods—such as video image processing and the use of crowdsourced 

data—are promising (StreetLight, 2019), but they still have limitations: video-based methods 

require a network of cameras and extensive software processing; and mobile app-based data 

come from a (potentially unrepresentative) segment of the population and require expansion 

factors. In summary, existing ways of monitoring pedestrian travel can usually collect data for 

either (but not both of) many locations or long time periods. 

One potential data source that is relatively ubiquitous in both time and space (available 

24/7 at many intersections) is the high-definition data logs from traffic signal controllers. Many 

(but not all) traffic signals require people walking who want to cross an approach to press a 

pedestrian push button to request the walk indication. The push-button is thus an active sensor 

that (barring any equipment malfunction) confirms that a person was indeed present at that 

location at a specific time. Although it is certainly not perfect—one person may press the button 

multiple times, or a group of people may only press the button once—pedestrian data from traffic 

signal controller logs could be a useful and ubiquitous automated source of pedestrian data that 

already exists at minimal additional cost. 

Until recently, this rich set of signal event data was not being systematically logged. 

Smaglik et al. (2007) developed a general method and module for automatically logging time-

stamped event data from traffic signal controllers. These high-resolution data loggers record 

many types of traffic signal events, including active phase changes, phase control and overlap 

events, and vehicle and pedestrian detection events. Each record includes a timestamp, an event 

code, and an event parameter representing a phase or overlap number, detector channel, or other 

information (Sturdevant et al., 2012). Several pedestrian-relevant events are commonly logged:  

• Event code 0, Phase On: This event occurs with the activation of the phase on, such as 

the start of green or the start of the walk interval.  

• Event code 21, Pedestrian Begin Walk: This event occurs with the activation of the walk 

indication for a particular phase.  
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• Event code 22, Pedestrian Begin Clearance: This event occurs with the activation of the 

flashing don’t walk indication for a particular phase.  

• Event code 23, Pedestrian Begin Solid Don’t Walk: This event occurs when the don’t 

walk indication becomes solid, with the termination of the pedestrian clearance interval.  

• Event code 45, Pedestrian Call Registered: This event occurs when a call to service for a 

particular phase is registered from pedestrian demand. Note that this event may not occur 

if pedestrian recall is set for the phase.  

• Event codes 89 and 90, PedDetector Off and PedDetector On: These events occur when 

the signal from the pedestrian push-button is deactivated or activated, after any delay or 

extension is processed, for a particular pedestrian detector channel. Multiple pedestrian 

detection events may occur for a single pedestrian call registered.  

Traffic signal data—especially records of pedestrian detections and pedestrian phase 

calls—may provide valuable information about pedestrian activity levels over time at a location, 

as long as the signalized intersection has phases with walk indications and crossings with 

pedestrian detectors (usually pedestrian push-buttons). Nevertheless, obstacles must be overcome 

before pedestrian signal data can be successfully used as a proxy for intersection pedestrian 

volumes. These efforts include: validation of pedestrian actuation data against observed 

pedestrian counts, and development of conversion factors to translate actuations into levels of 

pedestrian activity (volumes). 

2.2.1  Previous Work 

To our knowledge, only three studies have investigated the use of pedestrian data from 

traffic signal controller logs to estimate walking activity at signalized intersections. 

Day et al. (2011) analyzed data on traffic-signal pedestrian phase actuations per hour at 

one signalized intersection in Indiana over 18 months. They identified patterns of pedestrian 

signal activity as a function of time of day, day of week, weather, other seasonal effects, special 

events, and a change in the pedestrian phase configuration. The authors also demonstrated that it 

was feasible to record pedestrian actuations over a long period of time with minimal additional 

cost, but they did not compare actuations with observed pedestrian counts. 
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Blanc et al. (2015) conducted a 24-hour pilot study of pedestrian activity at one 

signalized intersection in Oregon that had actuated pedestrian crossings (using push-button 

detection) on all four crossings. The authors used video data to manually count 596 pedestrians, 

which they compared to 482 pedestrian phases from the traffic signal controller logs. They 

developed adjustment factors for each phase and for the intersection overall. They also compared 

pedestrian counts to pedestrian actuations for each crosswalk and found correlations of 0.83 or 

greater, demonstrating the potential for traffic-signal pedestrian data to adequately approximate 

pedestrian crossing volumes at a signalized intersection. Finally, the authors demonstrated the 

potential to apply their adjustment factors to pedestrian phase data and calculate estimates of 

daily and annual average daily pedestrian counts. 

Kothuri et al. (2017) returned to the same Oregon intersection two years later to replicate 

the previous study’s findings. During daylight hours over nearly three days, the authors used 

video data to manually count 818 pedestrians, and signal controller log data to record 723 

pedestrian phases. Adjustment factors (pedestrians per phase) were roughly the same magnitude 

as before (0.9 to 1.2), and correlations were nearly as good in most cases (around 0.80, although 

one crossing was about 0.67). 

Overall, these studies demonstrate that it appears to be possible to use pedestrian signal 

data in order to estimate pedestrian crossing volumes. However, research is very limited and has 

studied only one or two intersections and a few dozen hours at a time. There is a need for much 

larger-scale research to see if these relationships hold (and if the validity of pedestrian signal 

data is maintained) in many different kinds of locations and under different conditions (including 

pedestrian recall, when the walk indication comes on without having to press the push-button). 

Thus, the ultimate purpose of this study is to examine and validate the use of pedestrian data 

from traffic-signal controller logs against observed pedestrian counts, in order to develop 

methods that use pedestrian signal data to estimate pedestrian crossing volumes. 

2.3  Time Series Clustering 

Machine learning and pattern recognition techniques have been used in multidisciplinary 

research in areas such as finance, geography, and electronics (Aghabozorgi et al., 2015), and 
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their application is increasing in the field of transportation and traffic engineering. Depending on 

the types of input data, one of two data mining techniques are typically used: supervised or 

unsupervised learning (Sathya & Abraham, 2013). Supervised learning requires training data 

based on a standard and known output, whereas unsupervised learning deals with unlabeled data 

or raw data. Unsupervised learning is more applicable to exploratory situations in which the 

specific numbers and types of desired outcomes are unknown, such as the classification of traffic 

signals according to their patterns of pedestrian activity.  

Clustering—a form of unsupervised learning—is a technique used to place similar 

objects into the same group without prior knowledge of a group’s definitions. These groups or 

clusters are formed by maximizing the similarity between objects in a particular group and 

minimizing the similarity with objects from other groups (Aghabozorgi et al., 2015). Clustering 

for temporally static, cross-sectional big data is straightforward to implement, but it is more 

complex for time series data. Since the input data set for this study involve time series of 

pedestrian events at traffic signals, the more specific method of time series clustering is required.  

The basic theory behind time series clustering is to convert time series data in the form of 

static data so that clustering algorithms developed for static data can be easily applied (Liao, 

2005). There are three common approaches to time series clustering: shape-based, feature-based, 

and model-based approach (Aghabozorgi et al., 2015). The shape-based approach compares the 

profile or shape of the time series by analyzing the peaks and trends of time series (Montero & 

Vilar, 2014). In feature-based approaches, some characteristics of the raw time series data are 

extracted, and clustering algorithms are applied to the features. For model-based methods, the 

original time series data is converted into suitable model parameters and then clustering 

algorithms are applied to those parameters (Aghabozorgi et al., 2015).   

Time series clustering has been widely used in the field of transportation. Côme and 

Oukhellou (2014) analyzed the usage (arrival/departure counts) of a bicycle sharing system in 

Paris and grouped the stations from high-volume to low-volume clusters by using clustering 

algorithms. Artificial neural networks in combination with clustering have been used to classify 

intersections based on vehicle trajectories or accident severity incidents (Akoz & Karsligil, 

2014). Similarly, clustering methods have been applied in traffic-flow prediction models (Smith 
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& Demetsky, 1994), traffic signal planning (Wang et al., 2005), and improving efficiency of 

traffic signals (Datesh et al., 2011). 

Critical steps in the cluster analysis process—selecting a (dis)similarity measure, 

choosing a clustering algorithm, and determining an optimal number of clusters—are discussed 

below. A step-wise overview of the entire clustering methodology adopted can be shown in 

Figure 2.1 below the following subsections.  

2.3.1  (Dis)similarity Measures  

In cluster analysis, (dis)similarity measures can be classified into two broad categories: 

shape based and structure based (Montero & Vilar, 2014). Shape-based (dis)similarity measures 

compare time series based on the direct proximity between their values, allowing us to compare 

the absolute magnitude of pedestrian activity across intersections. Two shape-based 

(dis)similarity measures are Euclidian distance (EU) and dynamic time warping (DTW). Given 

two time series Fi and Fj of length T, the following distance equations apply:  

𝑑𝐸𝑈(𝐹𝑖, 𝐹𝑗) = (∑(𝐹𝑖𝑡 − 𝐹𝑗𝑡)
2

𝑇

𝑡=1

)

2

(𝐸𝑞. 2.1) 

𝑑𝐷𝑇𝑊(𝐹𝑖, 𝐹𝑗) =   (∑| 𝐹𝑖𝑡 − 𝐹𝑗𝑡|

𝑇

𝑡=1

) (𝐸𝑞. 2.2) 

Structure-based (dis)similarity measures compare time series based on the simultaneity of 

their (increasing/decreasing) patterns, allowing us to compare the relative trajectories of 

pedestrian activity across intersections. Two structure-based (dis)similarity measures are discrete 

wavelet transform (DWT) and temporal correlation (CORT) (Chouakria & Nagabhusan, 2007). 

DWT transforms time series into their wavelet approximations and then finds the dissimilarity 

between those wavelet approximations. CORT, which measures the proximity of temporal 

variation between time series, can be calculated using the following distance equation:  

𝑑𝐶𝑂𝑅𝑇(𝐹𝑖, 𝐹𝑗) =
∑ (𝐹𝑖(𝑡+1) − 𝐹𝑖𝑡)𝑇−1

𝑡=1 (𝐹𝑗(𝑡+1) − 𝐹𝑗𝑡)

√∑ (𝐹𝑖(𝑡+1) − 𝐹𝑖𝑡)
2𝑇−1

𝑡=1
√∑ (𝐹𝑗(𝑡+1) − 𝐹𝑗𝑡)

2𝑇−1
𝑡=1

(𝐸𝑞. 2.3)
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Optimal (dis)similarity measures are mostly data- and use-specific. Hence, we 

experimented with different functions and selected ones based on visualization and statistical 

goodness-of-fit (see section 4.2 for more details).   

2.3.2  Clustering Algorithms 

Two common algorithms to perform time series clustering are: k-means and hierarchical 

clustering (Liao, 2005; Kassambra, 2017). The algorithms use dissimilarity measures to group 

observations into clusters, in which observations are similar to others within the same cluster and 

different from observations in other clusters. K-means iteratively assigns observations to groups, 

calculates the group center point, and then reassigns observations to whichever group has the 

closest center. Hierarchical clustering starts with each observation in its own group, then 

iteratively combines pairs of similar groups until all groups have been combined. The k-means 

algorithm is found to be computationally efficient but tends to produce poor results for datasets 

whose shape of clusters are non-spherical (not bounded by closed shape) and data points are 

closer to each other, when compared to hierarchical clustering. Therefore, k-means is suitable to 

use with shape-based (dis)similarity measures, whereas hierarchical clustering is better for 

structure-based measures. Another difference is that k-means requires a given (k) number of 

clusters, whereas hierarchical clustering produces results for any number of clusters. In either 

case, one must specify or select the number of clusters for the final result.  

2.3.3  Determining the Optimal Number of Clusters 

The final step in cluster analysis is to determine the optimal number of clusters (between 

one and the number of observations) that adequately represent patterns within a dataset. In k-

means clustering, increasing the number of clusters decreases the total within sum of squares (the 

objective function), but with diminishing returns. Common tools to assist in the selection of the 

number of clusters include an elbow curve (Kodinariya & Makwana, 2013) and a silhouette 

curve (Kassambra, 2017). For hierarchical algorithm, one can visualize the dendogram (tree 

structure) to determine a suitable cut-off point. The gap statistic curve (Tibshirani et al., 2001) 

can also be used for both algorithms.  

 



 

12 

 

Figure 2.1 Overview of cluster analysis methodology 
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2.4  Linear Regression 

Linear regression is a statistical data analysis technique that is used to determine the 

relationship between one particular variable of interest (Y) and one or many other variables (X). 

The X variables are called the independent, explanatory, or predictor variables. The dependent or 

outcome variable is denoted as Y. There are two types of linear regression: simple and multiple. 

In simple linear regression (see Eq. 2.4), a single independent variable (X) is used to 

predict the value of a dependent variable (Y). In multiple linear regression, two or more 

independent variables (Xs) are used to predict the value of a dependent variable (Y) (see Eq. 

2.5). The only difference between simple and multiple linear regression is the number of 

independent variables. Independent variables can be transformations of themselves, such as a 

quadratic or parabolic function (see Eq. 2.6).  

𝑌𝑖 = ꞵ
0

+ ꞵ
1

𝑋𝑖 + 𝜀𝑖     (𝐸𝑞. 2.4) 

𝑌𝑖 = 𝛽
0

+ 𝛽
1

𝑋𝑖1 + 𝛽
2

𝑋𝑖2 + 𝛽
3

𝑋𝑖3 + ⋯ + 𝜀𝑖    (𝐸𝑞. 2.5) 

𝑌𝑖 = 𝛽
0

+ 𝛽
1

𝑋𝑖 + 𝛽
2

𝑋𝑖
2 + 𝜀𝑖    (𝐸𝑞. 2.6) 

where, for each observation i: 

• Y is the dependent variable 

• X is an explanatory variable 

• 𝛽0 is the intercept (the value of y when x = 0) 

• 𝛽1…….𝑗 is the slope or parameter estimates for each X variable 

• ε is the residuals (the deviations from the fitted line to the observed values) 

 

There are several ways to measure the fit of the model to the original data: 

• The coefficient of determination (R2) can measure how close the data are to the fitted 

regression line. R2 is the proportion of total variance explained or accounted for by the 

model (both the independent variables 𝑋, and the parameters 𝛽). A value of R2 close to 1 

means that most of the variance is explained by the model. 
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• Root Mean Square Error (RMSE) is another measure of model fit. Lower values of 

RMSE mean that the differences between the observed values and the model’s predicted 

values are small, indicating a better fit. RMSE is a good measure of how accurately the 

model predicts the response, and it is a particularly important criterion for fit if the main 

purpose of the model is the prediction.  

• Mean Absolute Error (MAE) is the simplest measure of model fit. The MAE is the 

average of the absolute values of the differences between the forecasted values and the 

actual values. MAE tells us how big of an error (positive or negative) we can expect from 

the forecast on average. 

• A good-fit model equally distributes residuals around zero (when looking at a plot of 

residuals vs. observed values). There are no systematic over- or under-predictions.  

2.5  Summary 

In this chapter, we first summarized the results of a couple of studies that have tested 

using pedestrian traffic signal actuations as a proxy for pedestrian volumes, with success but 

only in single sites. We utilize a similar approach as was used in these three studies: collect 

automated traffic-signal pedestrian data, compare to manual counts (from video), and develop 

factoring methods to estimate pedestrian volumes. However, we do this for multiple intersections 

and multiple days, thus yielding more robust and generalizable results. The methods of linear 

regression we use to develop the factoring methods were also summarized in this chapter. The 

results of the factoring methods/models are presented later in Section 4.3.  

In order to ensure our results are applicable to a variety of locations and situations, we 

must first classify traffic signals into different typologies based on pedestrian activity patterns. In 

this chapter, we also detailed the machine learning technique (time series cluster analysis) that 

we use for determining the groups of signals from which we must sample. The results of the 

cluster analysis are presented later in Section 4.2.  
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3.0  DATA COLLECTION 

3.1  Overview 

This chapter summarizes the steps involved with data collection, assembly, and 

processing. First, we introduce the raw pedestrian data we can obtain from the traffic-signal 

controller logs through the ATSPM system. Next, we describe the data assembly process to 

support time series clustering: calculating different pedestrian activity metrics, processing 

ATSPM data to generate the cluster analysis inputs, and assembling geographic data used to 

characterize the clusters. Finally, we detail the steps involved with collecting and processing 

video and ATSPM data to support the analysis to develop pedestrian volume estimation 

methods: sampling intersections for video data collection, collecting observed pedestrian data 

from video recordings, assembling ATSPM data, and combining the two data sources.   

3.2  Traffic Signal Pedestrian Data 

3.2.1  High-Resolution Traffic-Signal Controller Logs 

Traffic signal controllers manage the safe operation of signalized intersections and their 

signal control infrastructure, such as vehicle and pedestrian indications/displays. This role 

includes interpreting and responding to external information about user demand through vehicle 

and pedestrian detectors (Urbanik et al., 2015). As a result, controllers deal with up to hundreds 

of events per minute, from phase changes to detector events. Such second-by-second event 

information—which can be as fine-grained as specific cycles and individual approaches—is 

useful for traffic-signal-operations management and for calculating signal performance 

measures. As previously mentioned (see section 2.2), these high-resolution traffic-signal 

controller data can now be systematically logged (Smaglik et al., 2007), including timestamped 

information about the specific event and associated phase or detector (Sturdevant et al., 2012). 

These logs may include valuable information about pedestrian user demand, if the signalized 

intersection has walk indications and pedestrian detectors (usually pedestrian push-buttons). In 

fact, such information has been used in a handful of studies to measure pedestrian activity levels 

(Blanc et al., 2015; Day et al., 2011; Kothuri et al., 2017). Earlier (in section 2.2), we noted that 
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several pedestrian-relevant events are commonly logged, including: pedestrian detection events 

or push-button presses (events 90 and 89), pedestrian calls registered (event 45), phase on (event 

0), and the start of the walk, flashing don’t walk, and solid don’t-walk intervals (events 21, 22, 

and 23).  

Table 3.1 shows a typical example of a how a traffic-signal controller log represents an 

instance of pedestrian user demand. This is for Signal ID 5306, located at the intersection of 

Main St. (US-89/US-91) and 400 N (US-89) in Logan, UT. Phase 8 (recorded as the event 

parameter) is associated with the northern crosswalk across Main St., and the pedestrian walk 

indication is not on recall. Approximately 32 seconds after noon on January 1, 2019, a person 

walking arrived at the intersection and pressed the pedestrian push-button twice in quick 

succession. The controller received this information through the detector card and noted the 

pedestrian detector on (90) at 32.6 seconds and off (89) at 32.9 seconds. Since this was the first 

pedestrian detection event for phase 8 during this cycle, the controller also registered a 

pedestrian call (45) at 32.6 seconds. The controller also noted the pedestrian detector on at 33.1 

seconds and off at 33.5 seconds, but no pedestrian call needed to be registered for this second 

detection event. At 55.0 seconds, phase 8 was served (0) and the walk indication turned on (21). 

Five seconds later, the flashing don’t-walk indication (22) started. At 1 minute, 22.0 seconds the 

solid don’t-walk indication (23) appeared, signaling the end of the walk phase.  

Table 3.1 Example Traffic-Signal Controller Log 

Signal Id Timestamp Event Code Event Parameter 

5306 01/01/2019 12:00:32.600 90 8 

5306 01/01/2019 12:00:32.600 45 8 

5306 01/01/2019 12:00:32.900 89 8 

5306 01/01/2019 12:00:33.100 90 8 

5306 01/01/2019 12:00:33.500 89 8 

5306 01/01/2019 12:00:55.000 0 8 

5306 01/01/2019 12:00:55.000 21 8 

5306 01/01/2019 12:01:00.000 22 8 

5306 01/01/2019 12:01:22.000 23 8 

 

3.2.2  Automated Traffic Signal Performance Measures (ATSPM) System 

To harness the power of high-resolution traffic-signal controller log data for signal 

systems operation and management, the Automated Traffic Signal Performance Measures 
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(ATSPM) system has been developed to convert raw data into useful performance measures 

(ATKINS, 2016; Day et al., 2014; Day et al., 2016). UDOT is a national leader in developing 

and deploying the ATSPM system for real-time management and archived performance 

assessment of traffic signals throughout the state. The data are archived and the performance 

measures are made available to the public (https://udottraffic.utah.gov/ATSPM/). This is made 

possible in part by a centralized system involving partnerships between UDOT and local 

agencies and an extensive network of connectivity to most signals in Utah. As of fall 2018, 

UDOT had connected 97% of the 1,237 state-owned signals and 82% of the 874 city/county-

owned signals to the system (Taylor & Mackey, 2018).  

Currently, there is one pedestrian-related performance measure calculated by the ATSPM 

system: pedestrian delay. This metric measures the time difference between a pedestrian call 

registered (45) and the subsequent walk indication (21) as an approximation of the crossing delay 

experienced by a waiting pedestrian. See Figure 3.1 for an example pedestrian delay graphic for 

the same intersection, phase, and day as the example of Table 3.1.  

 

Figure 3.1 Example pedestrian delay performance measure 

 

https://udottraffic.utah.gov/ATSPM/
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UDOT recently developed a way to download the raw traffic-signal controller log data on 

the ATSPM website, which can be accessed by select personnel with log-in credentials. 

Currently, downloads are limited to a single signal and just over one-million records at a time, 

but the logs can be filtered by event code, event parameter, and timestamp.  

3.3  Data for Typologies and Clustering 

The time-series clustering methods used to create typologies of pedestrian activity 

patterns require data over a long time period (e.g., a year) for all signals in the study area. In the 

following subsections, we define the different pedestrian activity metrics we considered, describe 

the data processing steps, and note the locational data we assembled to conceptually validate the 

typologies generated.  

3.3.1  Pedestrian Activity Metrics 

Before we can do the cluster analysis, we must select a metric to use when calculating the 

time series. With input from the technical advisory committee, we developed several different 

metrics for measuring intersection-level “pedestrian activity” from traffic-signal controller log 

data. Specifically, we created six different pedestrian activity metrics (PAMs) that could be 

useful for measuring patterns in intersection pedestrian activity using signal data. These PAMs 

are highlighted in Table 3.2.  

Table 3.2 Pedestrian Activity Metrics (PAMs) Considered 

PAM Equation Definition 

1 #90𝑡 # pedestrian detections per unit time t 

2 #45𝑡 # pedestrian calls registered per unit time t 

3 #90𝑡 ÷ #0𝑡 # pedestrian detections per phase  

4 #45𝑡 ÷ #0𝑡 # pedestrian calls registered per phase 

5 
100% × #90𝑡 ÷ ∑ #90𝑡

𝑇

1
 

# pedestrian detections at time t,  

as a percentage of the weekly total 

6 
100% × #45𝑡 ÷ ∑ #45𝑡

𝑇

1
 

# pedestrian calls detected at time t,  

as a percentage of the weekly total 

 

As shown in Table 3.3, each metric can be calculated for a particular intersection (overall 

for all phases, or for each phase separately) and for a single time unit within a given time period, 
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and it may be averaged over any larger time period. For this study, we calculated all metrics for 

each intersection (overall) and for each hour of the week, averaged over one year. The objective 

behind averaging across the whole year was to nullify some of the effects of temporal variation 

caused by special events, festivals, and other unusual activities. 

Table 3.3 Information about Traffic-Signal Pedestrian Activity Metrics 

Parameter Options Selected 

Intersection scope All phases, single phase All phases 

Time unit 
Year, quarter/season, month, week, day, hour, 

15 minutes, cycle, phase 
Hour 

Time period 
Year, quarter/season, month, week, day, hour, 

15 minutes, cycle 
Week 

Averaged None, year, quarter/season, month, week, day Year 

 

The most basic metrics are counts of the number of pedestrian detections (event code 90) 

and pedestrian calls registered (event code 45) within a unit of time t. These simple calculations 

are easy to perform and interpret, and they are comparable across sites as an initial magnitude of 

the level of pedestrian activity.  

𝑃𝐴𝑀1𝑡 = #90𝑡 (𝐸𝑞. 3.1) 

𝑃𝐴𝑀2𝑡 = #45𝑡 (𝐸𝑞. 3.2) 

The second set of metrics are the number of pedestrian detections and pedestrian calls 

registered per phase. By dividing by the number of phase starts (event code 0) within a unit of 

time t, these metrics can account for the fact that signals may have different and varying cycle 

lengths, thus different numbers of opportunities for pedestrian crossings. By normalizing by the 

number of phases, these metrics are more comparable across signals with short and long cycle 

lengths. They also retain the ability to assess the magnitudes of the original metrics, so sites with 

more pedestrian activity can be differentiated from sites with less pedestrian activity.  

𝑃𝐴𝑀3𝑡 = #90𝑡 ÷ #0𝑡 (𝐸𝑞. 3.3) 

𝑃𝐴𝑀4𝑡 = #45𝑡 ÷ #0𝑡 (𝐸𝑞. 3.4) 
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The last set of metrics are the number of pedestrian detections and pedestrian calls 

registered in a time unit t as a proportion of the total number within a longer time period T. By 

normalizing by some longer-time metrics of pedestrian activity, these metrics are also able to 

somewhat account for differences and variations in cycle lengths or number of cycles. 

Furthermore, by normalizing by a measure of the magnitude at a site, these metrics result in 

dimensionless values (expressed as a percentage) that do not depend on the overall pedestrian 

activity level at a site. Thus, these metrics are good measures of the shape of pedestrian activity 

patterns within a time period.  

𝑃𝐴𝑀5𝑡 = 100% × #90𝑡 ÷ ∑ #90𝑡

𝑇

1
(𝐸𝑞. 3.5) 

𝑃𝐴𝑀6𝑡 = 100% × #45𝑡 ÷ ∑ #45𝑡

𝑇

1
(𝐸𝑞. 3.6) 

Other considerations involving these metrics is the use of pedestrian detections versus 

pedestrian calls registered. For the first and second sets of metrics, pedestrian detections will be 

larger than pedestrian calls registered due to the possibility of multiple push-button presses prior 

to the walk phase being served. For the second set of metrics, a pedestrian call can only be 

registered once per phase, so the metric using pedestrian calls registered per phase is effectively 

the proportion of phases in which there were any pedestrian detections. For the third set of 

metrics, both metrics should be approximately equal, with the pedestrian detection metric 

perhaps slightly more peaked.  

Figure 3.2 displays the annual average hourly and weekly pedestrian activity metrics for 

an example signal.  
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PAM1t: Average pedestrian detections per 

hour 

PAM2t: Average pedestrian calls registered 

per hour 

  

PAM3t: Average pedestrian detections per 

phase per hour 

PAM4t: Average pedestrian calls registered 

per phase per hour 

  

PAM5t: Average pedestrian detections per 

hour, percentage of weekly total 

PAM6t: Average pedestrian calls registered 

per hour, percentage of weekly total 

Figure 3.2 Example plots of pedestrian activity metrics for Signal 5306 

 

For the purposes of developing typologies of pedestrian activity at traffic signals, we 

selected as the pedestrian activity metric: the number of pedestrian detections (𝑃𝐴𝑀1𝑡) per hour 

in a week, averaged over the course of a full year. This metric captures both magnitude and 

shape. Preliminary analyses found very similar clusters when using pedestrian calls registered 

(𝑃𝐴𝑀2𝑡) or pedestrian detections per phase (𝑃𝐴𝑀3𝑡) instead.  



 

22 

3.3.2  Data Processing 

The processing of the pedestrian-signal pedestrian data proceeded as follows. All data 

processing was conducted using custom scripts in R.  

First, raw controller log data (as CSV files) were downloaded for every available traffic 

signal from the ATSPM website. Due to the roughly million-record limit on downloads, only 

pedestrian-relevant event codes (0, 21, 22, 23, 45, 89, and 90) were selected for all phases. 

Furthermore, only three months (or less) of data were downloaded at a time, as the number of 

these events was less than 1,000,000 in three months for most signals. Some signals had too 

many pedestrian events, so the downloads were split into shorter time periods and merged back 

into three-month files afterwards. Data were downloaded for the following four quarters:  

• July 1, 2017 through September 30, 2017 

• October 1, 2017 through December 31, 2017 

• January 1, 2018 through March 31, 2018 

• April 1, 2018 through June 30, 2018 

Second, once all traffic signal data were downloaded, the quarterly logs for each signal 

were merged and sorted by timestamp to create a year-long raw data file spanning July 2017 

through June 2018. Third, for each signal, the number of phases (#0s), pedestrian calls registered 

(#45s), and pedestrian detections (#90s) were tabulated for each hour in the entire year. Fourth, 

these tabulations were then averaged across the entire year for each of the 168 hours in a typical 

week. This generated the first two pedestrian activity metrics: the number of pedestrian 

detections and pedestrian calls registered per hour (𝑃𝐴𝑀1𝑡, 𝑃𝐴𝑀2𝑡). Fifth, additional traffic- 

signal pedestrian activity metrics were calculated. These included the number of pedestrian 

detections and pedestrian calls registered per hour per phase (𝑃𝐴𝑀3𝑡, 𝑃𝐴𝑀4𝑡), as well as the 

number of pedestrian detections and pedestrian calls registered per hour as a proportion of the 

total number within a week (𝑃𝐴𝑀5𝑡, 𝑃𝐴𝑀6𝑡). Sixth, tables and figures summarizing the 

pedestrian activity metrics for each hour in an average week mid-2017 through mid-2018 were 

saved as CSV and PNG files.  
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Table 3.4 and Figure 3.2 show examples of the final processed data tables and figures for 

all six pedestrian activity metrics at an example signal.  

Table 3.4 Example Processed Data Table 

Signal Start End #0s 
PAM1 

(#45s) 

PAM2 

(#90s) 

PAM3 

(#45/0) 

PAM4 

(#90/0) 

PAM5 

(%45s) 

PAM6 

(%90s) 

5306 Mon 6AM Mon 7AM 185.17 4.33 9.08 0.02 0.05 0.28 0.24 

5306 Mon 7AM Mon 8AM 94.29 6.00 12.60 0.06 0.13 0.40 0.34 

5306 Mon 8AM Mon 9AM 90.60 8.81 14.81 0.10 0.16 0.58 0.40 

5306 Mon 9AM Mon 10AM 89.04 11.62 27.77 0.13 0.31 0.76 0.74 

5306 Mon 10AM Mon 11AM 82.81 12.40 26.83 0.15 0.32 0.82 0.72 

5306 Mon 11AM Mon 12PM 80.52 18.96 42.17 0.24 0.52 1.25 1.13 

5306 Mon 12PM Mon 1PM 81.40 15.75 37.00 0.19 0.45 1.04 0.99 

5306 Mon 1PM Mon 2PM 81.08 17.35 39.56 0.21 0.49 1.14 1.06 

5306 Mon 2PM Mon 3PM 81.79 17.94 46.40 0.22 0.57 1.18 1.24 

 

3.3.3  Traffic Signal Geographic Data 

To characterize the different types of pedestrian activity patterns resulting from the 

cluster analysis (see section 4.2), built environment data were collected at the Census block 

group level from the Smart Location Database (Ramsey & Bell, 2014). The specific measures 

used were household density (number of households per area), population density (number of 

people per area), and non-automobile employment accessibility (number of jobs within 30 

minutes by walk and transit). These built environment measures were calculated as the area-

weighted average of all Census block groups located within a 0.5-mile circular buffer from each 

signalized intersection.  

3.4  Data for Factoring Methods and Regression Models 

3.4.1  Study Locations 

The next step in this research project involved recording videos of traffic at signalized 

intersections throughout Utah and counting the number of pedestrian crossings (Task 3). These 

observed pedestrian counts were then compared to different traffic-signal pedestrian activity 

metrics to develop factors and factoring methods for estimating pedestrian volumes from traffic 

signal data (Task 4). The purpose of developing clusters of signals (typologies of traffic-signal 
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pedestrian activity patterns) [Task 2] was to ensure that we collect video data from a 

comprehensive sample of traffic signals so that our results are generalizable to different 

situations and conditions. In order to improve upon previous research and make our findings 

more generalizable and transferrable, our goal was to study a wide variety of locations that had 

different urban forms (urban to rural), were in different regions, and saw different levels of 

pedestrian activity (high to low). In this subsection, we describe the stratified random sampling 

of locations to study.  

Our sampling procedure began by filtering the list of signalized intersections to just those 

with a UDOT or local traffic camera that we could use to view (and record) live traffic camera 

feeds from around the state. We identified 521 signals with a traffic camera, but only 430 of 

those signals with cameras were assigned to a typology (see section 4.2). Given the available 

time and budget, we decided to sample up to 100 (23%) of these signals with cameras.  

Our stratified random sampling targets had two goals in mind. First, we wanted to include 

a sufficient number of signals from each of the typologies. Due to the small number of signals 

with cameras in some typologies, we first included a minimum of 6 signals (or all if less than 6) 

in each typology. This assigned 39 signals; for the remaining 61, we allocated them roughly 

proportionally to the number of signals in each typology. We also reserved 4 slots for HAWK 

signals (pedestrian hybrid beacons) which had not been assigned a typology. The total number of 

selected study intersections in each typology is shown in Table 3.5. Second, we wanted to 

include signals from throughout the state of Utah in different contexts and on different types of 

roadways. Therefore, we segmented our possible list of signals with cameras by UDOT Region 

and signal owner (state vs. local). Subject to the limits of what was available (for example, only 

four of Salt Lake City’s signals had traffic cameras), we attempted to select a number of signals 

in each region by owner based on the proportion of total signals (not the number with cameras). 

The total number of selected study intersections by UDOT Region is shown in Table 3.6.  

Although we planned to study up to 100 signals, we ended up only collecting data at 90 

signals, mostly due to connectivity issues with the video cameras. The location of the 90 studied 

signalized intersections with cameras for video data collection is shown in Figure 3.3 and listed 

in Appendix A.  
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Table 3.5 Sampling Targets by Typology  

Typology # signals # with cameras # selected # studied 

I  High, single peak 33 7 6 3 

II  Medium, single peak 164 49 15 14 

III  Medium, double peak (a) 12 3 3 3 

IV  Medium, double peak (b) 12 6 6 5 

V  Low, single peak 864 260 40 41 

VI  Low, double peak (a) 252 55 13 9 

VII  Low, double peak (b) 185 50 13 11 

Total 1,522 430 96 86 

 

Table 3.6 Sampling Targets by UDOT Region 

Region / Owner Signal IDs # signals # with cameras # selected # studied 

1 UDOT 5000s–5400s 343 66 16 19 

 Local 5500s–5900s 138 23 6 3 

2 UDOT 7000s–7900s 589 153 24 24 

 Salt Lake County 4000s–4900s 352 24 14 12 

 Salt Lake City 1000s–1900s 282 10 7 7 

3 UDOT 6000s–6400s 317 136 14 12 

 Local 6500s–6900s 149 42 6 0 

4 UDOT 8000s–8500s 129 35 8 8 

 Local 8600s–8900s 73 32 5 5 

 Total 2,372 521 100 90 

 



 

26 

 

Figure 3.3 Data collection sites at Utah signalized intersections 

 

3.4.2  Video Data Collection 

3.4.2.1  Recording Videos 

UDOT’s overhead traffic cameras were used to record video data of various intersections 

throughout Utah at different times of day and for various seasons during 2019. We recorded 

almost 10,900 hours of multiday videos, including views of 320 crosswalks at our 90 

intersections, resulting in around 24,000 crossing-hours of video. The list of intersections is 

shown in Appendix A and represents signals in each cluster and from all parts of Utah.  

The USU Time Lab has a fiber optic connection to UDOT’s Traffic Operation Center and 

can view (and record) live traffic camera feeds from around the state. We developed procedures 
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for recording live feeds, adding timestamps, and saving the resulting video file. The procedure of 

video recording is presented below: 

• Contact the UDOT TOC to request any slight adjustment to the camera field of view, 

or obtain access to camera pan/tilt/zoom and adjust the camera field of view 

ourselves, and then place a lock on the view for the duration of recording.  

• Use VLC Media Player to record and add a timestamp to the live stream of the 

camera feed, in raw h264 format, for a time period (usually 48–60 hours).  

• Convert the video file to MP4 and split into 6-hour sections (~2.5 GB each).  

• Save the videos on a password-protected cloud-based storage system.  

We recorded most intersections twice, since cameras could usually only cover two 

crosswalks at a time. We attempted to capture at least (and often more than) 24 hours of videos 

of each crosswalk, at least once during the year. Some locations were recorded two or more 

times throughout the year to observe seasonal differences (winter/spring, summer, and fall). We 

recorded videos from approximately three to five signals each week. Due to bandwidth limits, we 

could usually record only three or four videos at once. Moreover, we recorded on weekdays and 

weekends to observe day-of-week differences. Figure 3.4 shows the distribution of the total 

number of crossing-hours of video recorded by month. Similar distributions for weekdays and 

hours varied much less: between 3,313 and 3,670 crossing-hours per weekday, and between 932 

and 1,042 crossing-hours per hour.  
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Figure 3.4 Total crossing-hours of video recorded by month of 2019 

 

3.4.2.2  Counting Pedestrians 

After recording videos, we manually watched the videos and transcribed timestamped 

pedestrian crossing events in order to obtain pedestrian crossing volumes to compare against 

pedestrian signal data. 

We developed standardized data collection procedures, including training materials and a 

graphical user interface (built in R using Shiny) for recording pedestrian crossing events and 

saving data in a standardized format. Basically, every time a person (or a group of people) was 

observed using the crosswalk, we recorded this as a pedestrian crossing event that included a 

timestamp and the number of pedestrians using each crosswalk. (We did not record direction of 

travel. Also, to make it easier to count groups, we only required that pedestrians be somewhere 

in the crosswalk at the recorded time.) In addition to counting people walking under their own 

power (e.g., not being carried or pushed in a stroller), we recorded whether crosswalk users were 

using other modes, including people skateboarding, using scooters, on bicycles, in wheelchairs, 

and other vehicles (such as golf carts or sidewalk snowplows). We also collected additional 

information: whether a pedestrian turned the corner without crossing a street, whether a 

pedestrian had already crossed another leg of the intersection, whether a pedestrian was crossing 

the street far outside of the crosswalk, and other special circumstances (via notes). 

417
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Figure 3.5 shows an example of the information included in the Video tab of the 

interface. Figure 3.6 shows two example crossing events recorded from UDOT traffic cameras. 

In the left image, one person is walking in the east crosswalk (the camera faces south). In the 

right image, there are two people walking in the west crosswalk (the camera faces west). Figure 

3.7 shows how this event (in the left video) would be recorded in the Add Event tab of the 

interface. Note the event time and the one pedestrian listed for Crosswalk 2 (East).  

 

Figure 3.5 Example of the Video tab of the interface 

 

  
Figure 3.6 Example of pedestrian crossing events recorded on video 
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Figure 3.7 Example of the Add Event tab of the interface 

 

The data entry interface resulted in two data files being written for each set of videos: one 

with information about the video recording, and one with information about the events (which 

was continuously added to by the Event tab of the interface).  

Pedestrian crossing events were recorded by a team of up to 15 trained undergraduate 

students, who collectively spent around 2,600 hours watching video and counting pedestrians. 

(Over the 10,900 hours of video, this reflects an ability to watch videos at an average of 4x 

speed.) As shown in Table 3.7, our team counted around 175,000 people walking, about 12,600 

people bicycling, and fewer numbers of other crosswalk users.  

Table 3.7 Total Counts of People Walking and Other Activities 

Activity Count (#) 

People walking 174,923 

People bicycling 12,628 

People using (e-)scooters 2,453 

People skateboarding 897 

People in wheelchairs 537 

Other sidewalk users 221 

Pedestrians crossing outside of crosswalk 1,151 

Pedestrians turning corner 9,350 
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Before finalizing the pedestrian crossing data collected from the videos, we performed 

several quality checking procedures (including mass checks for missing or potentially erroneous 

information, and spot checks against the videos) involving multiple trained personnel. Overall, 

we corrected about 3% of all event records, mostly for minor and easily fixable issues such as 

unnecessary notes or timestamp errors. Some data entry errors may remain, but we are confident 

that we identified and fixed the majority and the most serious issues.  

3.4.3  ATSPM Data Assembly 

As previously mentioned (see section 3.3.2), we obtained the high-resolution traffic- 

signal controller log data from UDOT, via a raw-data export-download page on UDOT’s 

ATSPM system website (https://udottraffic.utah.gov/ATSPM/). For each video recording, we 

downloaded pedestrian-relevant data for that signal for the same time period as the video. 

We also performed a timestamp check of the video data against the signal data, to ensure 

that events lined up. We had added the timestamp to the video feed on the computer that was 

recording the videos, so there could have been a time lag between when the event occurred (and 

was recorded by the controller) and when the event appeared in the video (and was recorded 

using the computer’s clock). To check this, we picked a couple of traffic signal events that were 

visible from the video (e.g., pedestrian begin clearance / flashing walk) for a particular crossing, 

and recorded the timestamp on the video. We then matched the relevant record from the ATSPM 

data for that event code (e.g., 22) and phase. (See Table 3.8 for example checks.) In nearly all 

cases, the time difference was only a couple of seconds, and always less than six seconds. Since 

this time discrepancy was much smaller than our desired temporal unit of analysis (one hour), we 

did not make any timestamp adjustments.  

Table 3.8 Example Timestamp Checks 

Signal 

ID 

ATSPM 

timestamp 

Event 

code 

Event 

parameter 

Video timestamp Time 

difference  

7184 2/13/2019 18:02:55 22 4 2/13/2019 18:02:57 2 sec 

5108 3/17/2019 19:31:07 22 8 3/17/2019 19:31:10 3 sec 

1021 3/4/2019 18:06:33 22 6 3/4/2019 18:06:33 0 sec 

8634 3/4/2019 18:39:07 22 2 3/4/2019 18:39:08 1 sec 
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3.4.4  Processing and Merging Data 

Once all pedestrian crossing event data from videos and traffic signal data from ATSPM 

were collected and checked, we proceeded with assembling, processing, and merging the data 

into one final aggregated dataset for analysis. We selected the hour (e.g., 9:00AM to 10:00AM) 

as the temporal unit of analysis, and the individual crossing (e.g., Signal 5306, crosswalk 

associated with phase 8) as the spatial unit of analysis. 

For the pedestrian crossing event data, we aggregated data by crossing and hour, 

summing up (separately) the number of people walking, bicycling, etc. We also calculated what 

would become our new outcome variable of hourly pedestrian crossing volume, using the sum of 

the people walking, skateboarding, and in wheelchairs (not including people bicycling or using 

scooters). Thus, we obtained hourly volumes of pedestrians and other crosswalk users for each 

signal and crossing. 

For the pedestrian traffic signal data, we performed a similar process of aggregating 

pedestrian-relevant events by crossing (using the associated phase number) and hour. Thus, we 

obtained hourly counts of pedestrian signal activity—phase on (event 0), pedestrian begin walk 

(event 21), pedestrian call registered (event 45), and pedestrian detector on (event 90)—for each 

signal and phase. 

In addition, we constructed several new measures of pedestrian signal activity, for a 

couple of reasons. First, while processing the data, we noticed that some traffic signal controllers 

did not record a pedestrian call registered (event 45)—such as when the phase was in pedestrian 

recall (since the walk indication came on automatically)—or recorded multiple pedestrian calls 

registered if the pedestrian push-button was pressed while the walk indication was on (between 

events 21 and 22). Second, we wanted to account for the fact that people may press the push- 

button multiple times in quick succession, which may reduce the ability of pedestrian signal data 

to predict pedestrian crossing volumes. The new pedestrian-signal activity metrics we 

constructed (again, aggregating by crossing-hour) were: 

• New 45s: imputed pedestrian calls registered, with some variations 

o 45A: In a sequence of events with just {0, 21, 22, 90}, the number of 90 events 
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immediately preceded by a 0 or 22 event.  

o 45B: In a sequence of events with just {0, 21, 90}, the number of 90 events 

immediately preceded by a 0 or 21 event.  

o 45C: In a sequence of events with just {0, 90}, the number of 90 events 

immediately preceded by a 0 event.  

• New 90s: unique (or time-filtered) pedestrian detections, with some variations 

o 90A: In a sequence of events with just {90}, the number of events with a time 

difference ≥ 5 seconds from the previous 90 event.  

o 90B: In a sequence of events with just {90}, the number of events with a time 

difference ≥ 10 seconds from the previous 90 event.  

o 90C: In a sequence of events with just {90}, the number of events with a time 

difference ≥ 15 seconds from the previous 90 event.  

All of these data were then merged together into one long pedestrian video count and 

signal-activity data file for use in the modeling and factoring processes described in Section 4.3. 

See Table 3.9 for an example of this final data file.  

Table 3.9 Example Final Data Table 

SIGNAL TIME1 TIME2 P PED BIKE SCOOT SKATE WHEEL OTHER PEDOUT 

7086 3/4/2019 13:00 3/4/2019 14:00 2 16 2 0 0 0 0 0 

7086 3/4/2019 14:00 3/4/2019 15:00 2 21 3 0 0 0 0 0 

5030 7/11/2019 8:00 7/11/2019 9:00 2 10 1 0 0 0 0 0 

5030 7/11/2019 9:00 7/11/2019 10:00 2 7 4 0 0 0 0 0 

7382 8/4/2019 20:00 8/4/2019 21:00 8 8 2 2 4 0 0 0 

7382 8/4/2019 21:00 8/4/2019 22:00 8 14 0 0 0 0 0 0 

           

SIGNAL TIME1 TIME2 A00 A21 A45 A90 A45A A45B A45C A90A A90B A90C 

7086 3/4/2019 13:00 3/4/2019 14:00 31 8 7 12 7 8 8 11 11 11 

7086 3/4/2019 14:00 3/4/2019 15:00 30 12 12 35 12 12 12 21 18 15 

5030 7/11/2019 8:00 7/11/2019 9:00 32 9 9 24 9 9 9 13 12 12 

5030 7/11/2019 9:00 7/11/2019 10:00 33 8 8 18 8 8 8 12 12 10 

7382 8/4/2019 20:00 8/4/2019 21:00 30 10 14 33 10 12 12 14 12 12 

7382 8/4/2019 21:00 8/4/2019 22:00 32 10 10 53 10 10 10 18 13 12 

 

Additionally, we enhanced our aggregated pedestrian signal dataset with other variables 

reflecting traffic signal operations, also at the crossing and hourly level:  

• Pedestrian recall: whether or not the phase was likely set to pedestrian recall for some or 

all of the hour. This was determined using a complex series of conditional statements 
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(involving relative counts of events 0, 21, 90, and new 45s) which classified 98% of 

situations, followed by a predictive model to classify the remaining 2%. Records were 

checked and only 0.3% had to be manually corrected.  

• Cycle length: approximate average cycle length. This was calculated by dividing the 

number of minutes (with observed data) in the hour by the number of phase on events (0). 

Prior to estimating any models, we slightly filtered our data in order to obtain more 

reliable results. First, we removed any records with missing pedestrian signal data. These were 

usually either: (1) “crossings” where a legal crossing (and therefore, pedestrian signals and push-

buttons) didn’t exist; or (2) hours where ATSPM data was missing entirely. Second, we removed 

around 1,000 observations with less than 45 minutes of video coverage within the hour. These 

were usually partial hours when a video started or ended. We worried that including short hours 

would bias our models towards zero, leading to slightly inaccurate factors and predictions. Third, 

we removed four hours of outliers on signal data at one signal that we could tell were due to a 

malfunctioning push-button, and 15 hours of outliers on pedestrian counts at a second signal that 

occurred due to major concerts and sporting events at an adjacent arena. After this filtering 

process, 22,630 crossing-hour observations remained. 

3.5  Summary 

In this chapter, we summarized the steps involved with data collection, assembly, and 

processing. To prepare data for using cluster analysis to identify typologies of pedestrian activity 

patterns, we first downloaded raw traffic-signal controller log entries of pedestrian-relevant 

events (pedestrian indications, calls, and detections) for every signal in Utah using the ATSPM 

system from July 2017 through June 2018, and then we calculated six pedestrian activity 

metrics—pedestrian detections and pedestrian calls registered per hour, averaged over the year 

for each hour in a week, also divided by the number of phases and normalized into a percentage 

of the weekly total—that we created to quantify pedestrian activity levels from traffic signal 

data. To collect and assemble data for using regression models to develop factoring methods to 

estimate pedestrian volumes from signal data, we first selected study locations using a strategic 

random sampling procedure. Next, we recorded over 10,000 hours of multiple days’ video from 

January 2019 to December 2019 at 90 signalized intersections throughout Utah. Using recorded 
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videos, we then manually counted pedestrian events and entered this information into a database 

using a user interface. Finally, we combined our count data with signal data from ATSPM and 

produced the dataset used for model estimation in the next chapter. 
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4.0  DATA EVALUATION 

4.1  Overview 

This chapter reports the detailed results of our analysis. First, we present results from the 

time-series cluster analysis, including the pedestrian activity metrics and clustering algorithms 

selected, the cross-classification of signals into typologies, descriptions of pedestrian activity 

patterns for signals in each typology by shape and magnitude, and characterizations by location. 

Second, we present results from our linear regression models that developed factoring methods, 

including our evaluation criteria, results from preliminary testing, final model results (including 

visual plots), overall results, and an example application of the models to predict pedestrian 

volumes. Third, we document the prototype visualizations we have developed to display 

pedestrian signal data and estimated pedestrian volumes at signalized intersections. We end the 

chapter with a summary of key takeaways.  

4.2  Typologies of Pedestrian Activity Patterns (Time Series Clustering) 

Time-series cluster analysis (see section 2.3) requires data that are continuous, uniform, 

and of equal length. First, we assembled one year of ATSPM data and calculated six pedestrian 

activity metrics for most signals in Utah (as described in section 3.3). Overall, 850 (of 2,372) 

intersections with no (or incomplete) PAMs were removed prior to clustering, leaving a final 

analysis dataset of 1,522 signalized intersections. (The number of intersections used was slightly 

less for PAM3t and slightly higher for PAM4t.) Each time series contained 168 hourly 

observations, one for each hour/weekday combination (the annual average hourly/weekday value 

of the PAM).  

We performed a total of twelve different time-series clustering procedures on these data, 

using two different (dis)similarity measures and clustering algorithms on each of the six PAMs. 

Optimal (dis)similarity measures are mostly data- and use-specific, and clustering algorithms can 

work better with certain measures. Since PAM1t and PAM2t essentially measure the absolute 

magnitude of pedestrian activity, shape-based measures (EU and DTW) and a k-means clustering 

algorithm were used. Alternatively, structure-based measures (CORT and DTW) and hierarchical 
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clustering algorithms were appropriate for comparing the dimensionless patterns of PAM5t and 

PAM6t. For PAM3t and PAM4t, which are based on magnitude but normalized somewhat. Both 

types of measures and algorithms (EU and k-means, CORT and hierarchical) were tested.  

When computing the optimum number of clusters for each PAM, the recommended 

methods (elbow curve, silhouette curve, gap statistic) suggested slightly different numbers of 

clusters. In order to compare results across PAMs, (dis)similarity measures, and clustering 

algorithms, we decided to use the same number of clusters in each case: Three clusters provided 

a reasonable selection across selection criteria. Therefore, every analysis used three clusters for 

comparative purposes. The TSCLUST package in R (Montero & Vilar, 2014) was used to 

perform the clustering. 

4.2.1  Cluster Analysis Results 

Cluster analysis results are summarized in Table 4.1.  

Table 4.1 Cluster Analysis Results 

PAM 

(Dis)similarity 

measure Algorithm 

Cluster sizes 

total within 

cluster sum 

of squares 

average 

distance 

within 

cluster 

average 

silhouette 

width 

Dunn 

index 1st 2nd 3rd 

PAM1t EU k-means 1,140 311 71 33,170,045 106.157 0.448 0.424 

PAM1t DTW k-means 1,128 329 65 1,430,250,297 726.113 0.385 0.338 

PAM2t EU k-means 1,301 188 33 5,330,000 39.040 0.457 0.240 

PAM2t DTW k-means 1,303 188 31 306,900,000 285.900 0.434 0.190 

PAM3t EU k-means 1,350 133 13 6,005 1.175 0.512 0.099 

PAM3t CORT hierarchical 1,485 9 2 12,458 1.130 0.540 0.078 

PAM4t EU k-means 1,389 131 15 542 0.330 0.393 0.152 

PAM4t CORT hierarchical 1,194 328 13 730 0.390 0.551 0.283 

PAM5t CORT hierarchical 1,093 277 152 22,151 3.973 0.162 0.830 

PAM5t DWT hierarchical 1,149 316 57 22,269 4.427 0.071 0.684 

PAM6t CORT hierarchical 1,061 264 197 16,406 3.478 0.242 0.800 

PAM6t DWT hierarchical 1,027 368 127 17,590 3.820 0.181 0.512 

 

Clustering of PAM1t and PAM2t resulted in three distinct clusters of signalized 

intersections, easily distinguished by their magnitude. One high activity (but small) group had 

weekday peak hours of ~140 pedestrian detections (~85 pedestrian calls registered); a medium 

activity group was more in the range of 75 detections (30 calls registered); and the lowest 

activity group (but the largest, constituting about 75% of all signals) averaged less than 25 

detections (about 10 calls registered) in the highest weekday hour. Results using the measures 
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EU and DTW were nearly identical—almost 95% of intersections in clusters of PAM1t (EU) 

were included in same clusters of PAM1t (DTW)—indicating that either measure could be used 

for classification.  

Cluster results for PAM5t and PAM6t were also similar no matter which measure (CORT 

and DWT) was used: The overlap between clusters of PAMs was in the range of 60–70%. 

Interestingly, there were fewer visual distinctions between cluster shapes. Differences were 

mostly apparent in the number and magnitude of the daily peaks: Two groups had two daily peak 

hours (one with higher peaks and lower troughs), while one group had only an afternoon peak. 

The one-peak group also had slightly higher relative weekend activity than the two-peak groups.  

Conversely, consistent results could not be obtained from the clustering of PAM3t and 

PAM4t. Almost 95% of intersections were assigned to the lowest magnitude clusters. 

Observations in the smallest cluster for PAM3t could be considered outliers, as they show 

(unexpectedly) high average pedestrian activity at night. Similarly, several observations have 

PAM4t values greater than one (indicating more pedestrian calls than phases), which is also 

unexpected. (There were also issues with infinite values resulting from dividing by zero.) These 

irregularities require further investigation and suggest that PAM3t and PAM4t may not be the best 

metrics for creating pedestrian activity typologies.  

Internal validation of clustering results considered two aspects: compactness (the 

proximity of objects within same cluster) and separation (the distinctiveness of objects in one 

cluster from those in others) [Kassambara, 2017]. Lower values of compactness measures—total 

within cluster sum of squares and average distance within cluster—reflect well-formed clusters. 

Clusters with higher average silhouette width (a separation measure) are more distinctive: One 

represents perfectly formed clusters, whereas negative values reflect placement of objects in the 

wrong cluster. Higher values on the Dunn index (a combined measure) implies compact and 

well-separated clusters. 

As shown in Table 4.1, overall, all the clusters performed satisfactorily along 

compactness and separation lines, although there were differences between (dis)similarity 

measures. Clusters formed using EU were more compact and better separated than those formed 
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by DTW (for PAM1t and PAM2t); CORT performed better than DWT for clusters of PAM5t and 

PAM6t.  

4.2.2  Typologies (Pedestrian Activity Patterns) 

The aim of our study is to develop typologies (or factor groups) of pedestrian activity 

patterns at signalized intersections that can differentiate between higher/lower volumes and 

daily/weekly temporal variations. Ideally, this would include measures of both the absolute 

magnitude as well as the relative shape of pedestrian activity across hours in a week. Luckily, we 

had both in the form of PAM1t and PAM2t for magnitude and PAM5t and PAM6t for relative 

shape. (Recall, also, the limitations with using PAM3t and PAM4t.)  

Given the substantial overlap between each set of four cluster results, we selected just 

one from each set. Given their superior performance, we chose EU for PAM1t and PAM2t and 

CORT for PAM5t and PAM6t. Based on preliminary results of ongoing research by the authors—

suggesting that calls registered (#45s) is a slightly more accurate predictor of pedestrian volumes 

than detections (#90s), which can overestimate in the face of multiple push-button presses—we 

selected PAM2t and PAM6t. We acknowledge that the selection of other PAMs or cluster 

methods to define typologies could have been similarly justified.  

We used the results from the time series clustering of PAM2t (EU) and PAM6t (CORT) to 

cross-classify signals into seven typologies or factor groups of pedestrian activity patterns at 

signalized intersections. Table 4.2 shows the frequencies of each typology and how they relate to 

the clustering results. Figure 4.1 plots the average values of the PAMs across all signals in each 

typology. Note that each figure has one time series line but two axes—the number of pedestrian 

calls registered per hour (left) and same thing expressed as a percentage of the weekly total 

(right)—because PAM6t is constructed as a percentage depiction of PAM2t. As discussed in more 

detail below, each typology can be most clearly characterized by its weekday peak magnitude 

and the number of daily peaks. 
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Table 4.2 Typologies Based on Cross-Classification 

Magnitude: PAM2t (EU) 

(# calls registered) 

Relative shape: PAM6t (CORT) (% weekly total) 

Single peak Double peak (a) Double peak (b) 

High Type I: 33 — — 

Medium Type II: 164 Type III: 12 Type IV: 12 

Low Type V: 864 Type VI: 252 Type VII: 185 

 

Overall, all typologies had some similarities in observed average weekly pedestrian 

activity patterns. Unsurprisingly, pedestrian activity was highest during daytime and evening 

hours, with most intersections recording little-to-no activity overnight. Peak pedestrian hours 

were more common in the afternoon and early evening than in the morning. Weekend pedestrian 

activity (especially on Sundays) was lower than on weekdays, but often without a clear single 

peak hour. Tuesdays often had the largest peak hour of pedestrian activity, while Mondays and 

Fridays tended to have slightly lower peaks than other weekdays.  
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Figure 4.1 Plots of mean values of typologies 
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Type I: High, Single Peak 

Only 33 intersections (2.2%) belonged to this category, which were characterized by 

consistently high midday pedestrian activity (>75 pedestrian calls registered per hour) and only 

slightly less weekend activity. Peak weekday hours constituted only about 1% of total weekly 

activity. These intersections have high pedestrian activity during the day on weekdays and 

weekends 

Type II: Medium, Single Peak 

164 intersections (10.8%) fell into this category. These intersections had similar 

pedestrian activity patterns as Type I, except with slightly lower magnitudes: Peak midday hours 

saw >30 pedestrian calls registered. Again, the peak hours on weekdays represented around 1% 

of total weekly pedestrian calls. These intersections have medium levels of daytime pedestrian 

activity throughout the week.  

Type III: Medium, Double Peak (a) 

Just 12 intersections (0.8%) belonged to this type, which had clear AM peaks and larger 

PM peaks (>30 and >50 pedestrian calls registered per hour, respectively), with substantially less 

activity (~10 pedestrian calls per hour) in between and on weekends. Consistent with this 

discontinuous pattern, PM peak hours had nearly 3% of weekly activity. These intersections have 

high weekday pedestrian activity during a couple of AM and PM hours and much lower activity 

at other times and on weekends.  

Type IV: Medium, Double Peak (b) 

Another 12 intersections (0.8%) fell into this type, which had two peaks and similar 

patterns as Type III. Some differences include: lower peak magnitudes (>20 and >40 pedestrian 

calls registered per hour), lower PM peak proportions (nearly 2% of weekly total), and more 

midday activity (20–30 pedestrian calls per hour). These intersections have high pedestrian 

activity during one or two PM hours and medium activity at other times and on weekends.  

Type V: Low, Single Peak  

These intersections were numerous, representing more than half (864, 56.8%) of all 

signals. These intersections averaged <10 pedestrian calls registered per hour, with a single PM 
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peak hour. As with Types I and II, peak hours constituted a little more than 1% of weekly totals. 

These intersections tend to have low pedestrian activity all the time.  

Type VI: Low, Double Peak (a) 

These intersections were also common (252, 16.6%), and displayed similar shapes but 

lower magnitudes than Type III. They had clear AM and larger PM peak hours (>10 and >5 

pedestrian calls registered), and PM peaks were typically 2–3% of total weekly activity. These 

intersections have low-to-medium pedestrian activity during one or two PM hours and much 

lower activity otherwise.  

Type VII: Low, Double Peak (b) 

185 intersections (12.2%) belonged to this type, which was quite similar to Type VI. 

Minor differences included: slightly lower peak hour proportions (~2% of weekly totals) and 

slightly higher midday pedestrian activity. These intersections also have low pedestrian activity 

outside one or two PM hours of low-to-medium activity.  

4.2.3  Built Environment Characteristics 

Pedestrian demand at intersections is influenced by land use characteristics, employment 

generators, residential density, access to transit, and proximity to schools (Hankey et al., 2012). 

To further characterize and validate our typologies, we calculated various built environment 

attributes for the Census block groups within 0.5 miles of each signalized intersection. Results—

averaged across all signals in each typology—are shown in Table 4.3. 

Table 4.3 Typologies by Built Environment Characteristics 

Typology 

Population 

densitya 

Household 

densityb 

Employment 

accessibilityc 

# Transit 

stopsd # Schoolsd 

Type I 4,684 2,018 221,556 34.5 1.76 

Type II 5,975 2,650 328,670 28.8 2.26 

Type III 3,342 1,178 37,379 9.2 1.58 

Type IV 5,911 2,245 228,773 22.2 2.33 

Type V 3,489 1,342 98,200 12.4 1.13 

Type VI 3,794 1,399 94,874 11.3 1.56 

Type VII 4,216 1,492 91,921 12.1 2.08 

Units: a households/mi2; b population/mi2; c jobs within 30 minutes, d within 0.5 mi 
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Results were relatively consistent with expectations about relationships between the built 

environment and pedestrian activity. In general, signals in the high and medium typologies 

(Types I–IV) were in locations with greater residential density and employment accessibility and 

more transit stops than signals in the low typologies (Types V–VII). Type III intersections were 

somewhat anomalous to these trends, but they were a small group (just 12). There were no clear 

trends with proximity to schools.  

When visually inspecting maps of signalized intersections by typology (not shown), some 

trends emerged. High activity (Type I) intersections were concentrated in downtown Salt Lake 

City and at large universities (Utah State University, University of Utah, and Brigham Young 

University). Intersections with medium pedestrian activity (Types II–IV) were mostly found in 

downtowns, major suburban commercial areas, adjacent to universities, and near transit, parks, 

and other amenities. The lowest activity (Types V–VII) intersections were dispersed everywhere 

in Utah. 

4.3  Pedestrian Volume Estimation Methods (Regression Modeling) 

Since our ultimate goal was to develop an easy way to use pedestrian signal data to 

estimate pedestrian crossing volumes, we estimated regression models that in their simplest form 

reflect a factoring approach: Multiply some pedestrian-signal activity metric by a number (or 

plug it into a simple equation), and get an estimate of pedestrian crossing volume. (We fixed the 

intercept to be zero.) Overall, this is an adaptation and expansion of correlative methods used in 

previous research (Blanc et al., 2015; Kothuri et al., 2017). 

There were a variety of ways in which to develop and specify our models, using: different 

independent variables (pedestrian-signal activity measures), different model forms (linear or 

various non-linear specifications), different phasing (separating out by phase numbers or 

pedestrian recall), different segmentations (ways to split the dataset into different groups of 

signals with similar characteristics), and other additional variables to consider. Therefore, we 

chose both quantitative and qualitative criteria for assessing our models:  

• Root mean square error (RMSE): a common measure of the forecasting accuracy of a 

statistical model. Specifically, this is calculated as the square root of the mean of the 
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sum of the squared errors/residuals (difference between the actual and predicted 

values). Lower values (closer to 0) indicate greater accuracy and are desired. Larger 

errors have greater weight than smaller errors.  

• Mean absolute error (MAE): another common measure of forecasting accuracy. 

Specifically, this is the mean of the absolute value of the errors/residuals. Lower 

values (closer to 0) indicate greater accuracy and are desired. MAE is easier to 

interpret than RMSE.  

• Correlation: a measure of the association between pairs of values. Specifically, this is 

the Pearson correlation between the observed and predicted values. Larger values 

(closer to 1) indicate greater similarity and are desired.  

• Plot of observed versus predicted values: Specifically, this is a plot of actual values 

(x-axis) versus predicted values (y-axis), with a 1:1 “perfect prediction” line drawn. 

Points below the line are underestimated and points above the line are overestimated 

by the model. Ideally, points would fall close to the line with no large groups 

consistently above or below the line.  

• Plot of residuals versus observed values: Specifically, this is a plot of the 

errors/residuals (x-axis) versus observed values (y-axis), with a horizontal “perfect 

prediction” line through zero drawn. Points below the line are overestimated and 

points above the line are underestimated by the model. Ideally, points would fall close 

to the line with no large groups consistently above or below the line.  

• Model parameters: Specifically, these are the estimated coefficients of the model 

which would be multiplied by the independent variables to predict values of the 

dependent variable. Contingent on the model specification, these values should be not 

too small but also not too large, and should be noticeably different for each segment 

(otherwise it would be useless to split the data into different groups).  

• Simplicity: The method should be simple, easy to understand, and easy to apply. 

There shouldn’t be too many calculations, inputs, or segments needed.  
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4.3.1  Preliminary Testing 

In order to quickly narrow in on the best options from among the large number of 

possible alternative models, we first estimated 150 different models corresponding to the unique 

combinations (6 x 5 x 5) of the following options: 

• Independent variables: 45A, 45B, 45C, 90A, 90B, or 90C.  

o Preliminary analysis revealed that all of these yielded better fitting models than 

the original counts of events 45 and 90.  

• Model forms: linear, piecewise linear (with one breakpoint), quadratic, exponential, and 

power.  

• Phasing: all phases, phases 2/6 only, phases 4/8 only, phases and hours with pedestrian 

recall, phases and hours without pedestrian recall.  

o At most UDOT signals, phases 2/6 are crossings of the side street (parallel to the 

main street), while phases 4/8 are crossings of the main street (parallel to the side 

street). When in coordination during the day, phases 2/6 are often set to pedestrian 

recall, while phases 4/8 are usually never set to pedestrian recall.  

Next, we assessed these 150 models using the three quantitative criteria (RMSE, MAE, 

and correlation). This effort revealed several suggestions for which options to continue 

considering and which to discard as inferior prior to the final models: 

• Independent variables: 45B had the best overall performance (lowest RMSE and MAE, 

second highest correlation)—although 45A and 45C were within 1–2% of 45B in terms 

of model accuracy—while 90C was best in some situations (with 90A and 90B also not 

that much worse). Therefore, we proceeded with testing either 45B or 90C.  

• Model forms: All of the non-linear specifications (except for exponential, which had 

generally poor fits) performed better than a simple linear (one multiplicative factor) 

model. Yet, piecewise linear and quadratic specifications both offered the best 

improvements over a linear model: 6% lower RMSE, 16% lower MAE, and 5-6% higher 

correlation. Therefore, we proceeded with testing both piecewise linear and quadratic 

models.  
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• Phasing: Splitting the data by phases/hours with/without pedestrian recall fit the data 

better than splitting the data by phase number (2/6 vs. 4/8); this also accommodated 

signals with non-standard pedestrian phases. Therefore, we proceeded with segmenting 

the data using pedestrian recall. 

Before estimating the final models, we also tested whether segmentations by other 

variables improved the models:  

• Day of week: We tested whether there were different relationships on Mondays through 

Friday than on Saturdays and Sundays. Although there were some statistically significant 

differences (not surprising, given the large sample sizes), segmenting by day of week did 

not offer enough meaningful improvement in model fit to warrant the additional 

complexity.  

• Time of day: We also tested whether there were different relationships during the day 

than at night (defined as between 9pm and 6am). Again, the models with statistically 

significant differences did not substantially improve model fit enough to justify this 

segmentation.  

• Pedestrian activity: We examined if relationships were different at signals with different 

levels of pedestrian activity. First, we conducted a new time-series cluster analysis (using 

k-means) on patterns of pedestrian signal activity, similar to what we did when selecting 

locations, but using the new 45B measure. Results (available upon request) suggested 

splitting signals into two groups: 135 signals with high pedestrian activity, and 1,476 

signals with low pedestrian activity. In order to apply this clustering at other locations 

and in the future (when pedestrian activity levels might change), we deterministically 

split signals using a breakpoint of greater than 350 annual average daily pedestrian signal 

activity (45B) to assign signals to the high-activity group. (Only 0.4% of signals were 

reclassified due to this deterministic grouping.) Then, for the regression models, splitting 

data into high- vs. low-pedestrian activity locations offered substantial improvements in 

some cases, so we proceeded with segmenting by pedestrian activity. 
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To summarize, when developing the final models, we considered: using 45B or 90C for 

independent variables, having piecewise linear or quadratic model forms, and segmenting by 

pedestrian recall, pedestrian activity, and cycle length. 

4.3.2  Final Model Results 

Our testing of various models and specifications yielded five models in which the data 

were segmented along several different dimensions. Below, each final model is described in its 

own section, followed by a summary of all model results and an example application. 
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4.3.2.1  HAWK Signal Crossings 

This model applies to all crossings at HAWK signals. There were 234 observations in the 

dataset. The best model was a quadratic specification using the A90C metric. The correlation 

was very high at 0.915, and the mean absolute error was 14.6, which is fairly large due to the 

high volumes observed at HAWK signals. The observations and model-predicted values are 

shown in Figure 4.2.  

 

Figure 4.2 Model for all crossing at HAWK signals 
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4.3.2.2  Crossings with Pedestrian Recall at High-Activity Signals 

This model applies to all crossings at high-activity signals when they operate with 

pedestrian recall. There were 1,440 observations in the dataset. The best model was a quadratic 

specification using the A45B metric. This model was the worst-performing model, but still had a 

correlation of 0.649. The somewhat large mean absolute error of 17.8 is not surprising due to the 

high pedestrian volumes experienced at these signals. The observations and model-predicted 

values are shown in Figure 4.3.  

 

Figure 4.3 Model for crossings with pedestrian recall at high-activity signals 
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4.3.2.3  Crossings with Pedestrian Recall at Low-Activity Signals 

This model applies to all crossings at low-activity signals when they operate with 

pedestrian recall. There were 3,644 observations in the dataset. The best model was a quadratic 

specification using the A45B metric. This model had a good correlation of 0.804 and a low mean 

absolute error of 2.0. The observations and model-predicted values are shown in Figure 4.4. 

 

Figure 4.4 Model for crossings with pedestrian recall at low-activity signals 
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4.3.2.4  Crossings without Pedestrian Recall Having Short Cycle Lengths (average < 1.5 

minutes) 

This model applies to crossings at all signals that operate not on pedestrian recall and 

have shorter average cycle lengths less than 90 seconds. There were 5,874 observations in the 

dataset. The best model was a piecewise linear specification using the A90C metric (with a break 

in the slope at 28). This model was the best-performing individual model, with a correlation of 

0.946 and mean absolute error of 1.6. The observations and model-predicted values are shown in 

Figure 4.5.  

 

Figure 4.5 Model for crossings without pedestrian recall and with shorter cycle lengths 
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4.3.2.5  Crossings without Pedestrian Recall Having Long Cycle Lengths (average ≥ 1.5 

minutes) 

This model applies to crossings at all signals that operate not on pedestrian recall and 

have longer average cycle lengths equal to or greater than 90 seconds. There were 11,438 

observations in the dataset (which represents about half of the sample). The best model was a 

piecewise linear specification using the A90C metric (with a break in the slope at 28). Note that 

this model and the previous one were estimated so that the first slope was equal, and that they 

diverged with different slopes only after the breakpoint. This model also performed strongly, 

with a correlation of 0.894 and a mean absolute error of 1.9. The observations and model- 

predicted values are shown in Figure 4.6. 

 

Figure 4.6 Model for crossings without pedestrian recall and with longer cycle lengths 
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4.3.3  Overall Results 

Table 4.4 shows the performance of each of the individual models and the overall 

performance of the combined models.  

Table 4.4 Model Goodness-of-Fit Statistics 

Model N R2 RMSE MAE Correlation 

HAWK signal crossings 234 0.873 35.304 14.623 0.915 

Crossings with pedestrian recall at 

high-activity signals 

1,440 0.561 40.836 17.841 0.649 

Crossings with pedestrian recall at 

low-activity signals 

3,644 0.723 3.943 1.965 0.804 

Crossings without pedestrian recall 

having short cycle lengths 

(average < 1.5 minutes) 

5,874 0.898 5.625 1.562 0.946 

Crossings without pedestrian recall 

having long cycle lengths 

(average ≥ 1.5 minutes) 

11,438 0.819 6.332 1.885 0.894 

Overall 22,630 0.724 12.247 2.961 0.839 

 

Table 4.5 presents the model estimation results for the five models (estimated in one 

pooled model with many segmentations). All estimated coefficients are statistically significantly 

different from zero. People looking to apply our models can use these coefficients to estimate 

pedestrian crossing volumes from pedestrian signal data.  

Table 4.5 Model Estimation Results 

Model Variable B SE t p 

HAWK signal crossings A90C 1.790 0.118 15.147 0.000 

A90C2 0.083 0.003 29.144 0.000 

Crossings with pedestrian recall at 

high-volume signals 

A45B 2.304 0.091 25.313 0.000 

A45B2 0.148 0.005 29.380 0.000 

Crossings with pedestrian recall at 

low-volume signals 

A45B 1.310 0.132 9.930 0.000 

A45B2 0.083 0.014 6.026 0.000 

Crossings without pedestrian recall 

having short cycle lengths 

(average < 1.5 minutes) 

A90C 1.215 0.018 68.970 0.000 

A90C – 28  

(if A90C > 28) 

4.292 0.086 50.132 0.000 

Crossings without pedestrian recall 

having long cycle lengths 

(average ≥ 1.5 minutes) 

A90C 1.215 0.018 68.970 0.000 

A90C – 28  

(if A90C > 28) 

7.214 0.126 57.288 0.000 
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4.3.4  Example Application: Annual Average Daily Pedestrians 

In order to demonstrate the utility of our models, we applied them to a year’s worth of 

data (July 2017 through June 2018) from all traffic signals in Utah to estimate annual average 

daily pedestrian (AADP) crossing volumes. For each hour at each crossing of each signal, we 

calculated A45B and A90C, determined whether the phase was likely on pedestrian recall, and 

calculated the approximate average cycle length, and then we applied the respective models. 

(Signal data were cleaned for missing data before applying the models.) Finally, we summed our 

estimates for each signal and day, and averaged daily totals across the year.  

We list the top ten highest (estimated) pedestrian volume signalized intersections in Table 

4. (There may actually be higher-volume pedestrian intersections in Utah, but many downtown 

Salt Lake City intersections always operate on pedestrian recall and have no push-buttons and 

thus no pedestrian activity data.) The high-volume locations make intuitive sense. Most of these 

signals are located in a small area of downtown Salt Lake City characterized by large centers of 

employment, shopping, and culture, as well as frequent transit service. For example, Signal 7244 

is located adjacent to the Salt Lake City Public Library, the Salt Lake City and County Building, 

and a light rail station. Two other signals (5807 and 6631) are located at the edge of large 

university campuses (Utah State University and Brigham Young University). The remaining two 

high pedestrian volume signals are in downtown Moab, a city in eastern Utah that sees high 

tourist activity due to its location adjacent to Arches and Canyonlands National Park. 

Table 4.6 Signals in Utah with the Highest Estimated Average Pedestrian Volumes 

Rank Signal Location Estimated AADP 

1 7138 S Temple & State St, Salt Lake City 6,737  

2 7244 400 S & 200 E, Salt Lake City 4,868  

3 7139 100 S & State St, Salt Lake City 4,519  

4 7248 400 S & 600 E, Salt Lake City 4,450  

5 5807 700 N & 800 E, Logan 4,446  

6 8303 100 S & Main St, Moab 4,307  

7 7243 400 S & Main St, Salt Lake City 4,009  

8 7142 400 S & State St, Salt Lake City 3,909  

9 8302 Center St & Main St, Moab 3,544  

10 6631 1230 N & Canyon Rd, Provo 3,476  
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4.4  Developing a Prototype Visualization/Tool                                                                                                                                     

We developed a prototype online tool and graphical interface that can visualize both raw 

(or processed) pedestrian traffic signal data as well as estimated pedestrian crossing volumes, the 

results of applying the factoring methods and models described in the previous section. The 

proposed visualization contains two views:  

• Map (Figure 4.7): This view contains a map (and associated table) showing results for 

one time period across many signals. The user can select the start and end dates and 

times, and decide which kind of data (signal data, or estimated ped volumes) should be 

displayed. There is also a toggle to show Total data or Averaged data. If Averaged data is 

selected, then the user can also specify a time unit (year, month, weekday, hour) as well 

as the specific time unit to show. For example, you can show the daily values for an 

average Monday during the spring of 2018, or the specific values for 4pm on the second 

Monday in May. The symbols on the map change automatically and present the value as 

shown in both size and color. Data shown in the table can be downloaded as a CSV file.  

• Figure (Figure 4.8): This view contains a figure (and associated table) showing results for 

one signal. The user can select the start and end dates and times, indicate whether all or 

just a select few phases should be displayed, and decide which kind of data (signal data, 

or estimated ped volumes) should be displayed. There is also the option to specify a time 

unit (year, month, weekday, hour) for aggregating the data. There is also a toggle to show 

Total data or Averaged data. If Total data is selected, the figure presents a time series 

between the specified start/end dates and for the specified time unit. If Averaged data is 

selected, the figure presents an averaged time series (averaged between the start/end 

dates) for all versions of the time unit. For example, you can show the average daily 

values for each weekday during the spring of 2018, or the specific values for each hour 

on the second Monday in May. The map is clickable to show the values. Data shown in 

the table can be downloaded as a CSV file.  
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Figure 4.7 Map view of the prototype pedestrian signal activity visualization 

 

 

Figure 4.8 Figure view of the prototype pedestrian signal activity visualization 
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The interface was developed as an R Shiny app in R using Shiny and Leaflet. It uses pre-

processed data obtained from the ATSPM signal database and is processed using custom R 

scripts. The app takes this data and visualizes it through various user interfaces.  

We hope that this prototype visualization is useful for UDOT when deciding how to 

proceed with future work visualizing and making sense of pedestrian signal data.  

4.4.1  Dashboard Monitoring Pedestrian Activity and COVID-19 

Additionally, due to the recent coronavirus pandemic, we have created a similar working 

online tool and graphical interface to visualize and quantify daily pedestrian signal activity 

(A90B) in 2020 and compared to the same day in 2019. This dashboard is available at 

https://singletonpa.shinyapps.io/ped-covid19/ and data are updated every few weeks. The 

interface has three components:  

• Information (Figure 4.9): This page contains general information about the dashboard, 

how to use it, and how it was developed, as well as showing some aggregate trends.  

• Map of many signals (Figure 4.10): This page displays a map showing data for all signals 

for a given date. The circles display both the 2020 pedestrian activity (size) as well as the 

% of 2019 values (color). One can zoom or pan to particular locations, and adjust the date 

or watch things change over time. There is also a table showing all values that can be 

downloaded as a CSV file.  

• Figure of one signal (Figure 4.11): This page displays a figure and table showing 2020 

and 2019 data for one signal for a given time period. One can select different date ranges, 

copy the figure, or download the table as a CSV file.  

https://singletonpa.shinyapps.io/ped-covid19/
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Figure 4.9 Information page of the pedestrian activity COVID-19 dashboard 

 

 

Figure 4.10 Map of many signals page of the pedestrian activity COVID-19 dashboard 
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Figure 4.11 Figure of one signal page of the pedestrian activity COVID-19 dashboard 

 

The dashboard was developed as an R Shiny app in R using Shiny and Leaflet. Every 

week, data from the previous week are queried using SQL from the ATSPM signal database. The 

data are then processed using custom R scripts to calculate the daily totals of signal activity 

(A90B) at each signal. The app takes this data and visualizes it through various user interfaces.  

We hope that this dashboard is useful for UDOT and other agencies for tracking 

pedestrian activity and making decisions about signal timing, open streets, and other operational 

activities.  

4.5  Summary 

In this chapter, we reported detailed results of our two primary analyses of pedestrian 

traffic signal data. First, we used time-series cluster analysis on one year of average 

hourly/weekday observations at 1,522 signals in Utah to develop seven typologies of pedestrian 

activity patterns. The typologies were the result of a cross-classification of clusters on both 

magnitude and relative shape. There were few high-volume intersections, some medium-volume 

locations, and many low-volume signals. Each of the medium- and low-volume signals were also 

split by whether they had a single midday peak or two daily peaks. We also characterized the 

signal typologies by built environment characteristics, finding expected positive relationships 
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between higher volume signals and greater residential density and employment accessibility. The 

higher volume typology was dominated (although not exclusively) by signals in UDOT Region 

2, while the lower volume typologies existed in all parts of the state.  

Second, we used various simple non-linear regression models to relate observed 

pedestrian crossing volumes with pedestrian push-button-based measures of pedestrian signal 

activity. We developed five different models, based on segmentations of signals: HAWK signals, 

crossings with pedestrian recall at high- or low-activity signals, and crossings without pedestrian 

recall with short or long cycle lengths. Overall, our models were able to predict pedestrian 

crossing volumes with good accuracy: a correlation of 0.84 and a mean absolute error of 3.0. We 

also applied our models to a year’s worth of traffic signal data to identify the estimated 

pedestrian volumes at the highest-volume signalized intersections in Utah.  

Third, we also document the prototype visualizations that we have created to display 

pedestrian signal data and estimated pedestrian volumes. These user interfaces and dashboards 

have map, figure, and table views, with the ability to download data as well. We hope that these 

prototypes are useful when visualizing pedestrian signal data and as a starting point for UDOT to 

develop working implementations.  
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5.0  CONCLUSIONS 

5.1  Summary 

The overall objective of this project was to explore the use of continuous pedestrian 

traffic signal data to develop estimates of pedestrian activity. Towards this aim, this project had 

three primary analysis objectives:  

1. To identify patterns of pedestrian activity at traffic signals.  

2. To develop methods to estimate pedestrian volumes from signal data.  

3. To create a prototype to visualize pedestrian signal activity. 

Section 1.0 introduced the project, while section 2.0 provided background material on the 

research topic and analysis methods, including time series clustering and linear regression. 

Section 3.0 described the data collection process for both objectives, including obtaining and 

processing high-resolution traffic-signal controller log data, recording videos, and counting 

pedestrian crossings. Section 4.0 reported the data evaluation/analysis, including the seven 

identified pedestrian activity patterns (typologies) and the five developed regression models 

(factoring methods) to estimate pedestrian volumes, and described the prototype visualizations. 

Section 6.0 will provide recommendations for implementation of the research findings. In this 

section, we conclude by highlighting the major findings from our data collection and analyses, 

and noting limitations and challenges.  

5.2  Findings 

5.2.1  Typologies of Pedestrian Signal Activity Patterns 

In this project, we investigated the use of a novel source of pedestrian big data 

(pedestrian push-button information from traffic signal controller logs) and a machine learning 

technique (time series clustering) to identify typologies of pedestrian activity patterns across 

signalized intersections in one US state (Utah). In the process, we collected one year’s worth of 

data from more than 1,500 signals, constructed six different pedestrian activity metrics (PAMs) 
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for each hour in an average week, and tested various clustering techniques, including four 

different (dis)similarity measures and two algorithms. After statistically and visually analyzing 

our clustering results, we developed typologies using a cross-classification of two clustering 

results: (1) the number of pedestrian calls registered (event code 45) per hour, using EU; and (2) 

the percentage of weekly pedestrian calls registered, using CORT. Our analysis resulted in seven 

pedestrian activity typologies of intersections, distinguished mostly by the magnitude and 

number of the daily peaks.  

Pedestrian signal data have the potential to overcome a major obstacle: the lack of 

continuous data on pedestrian activity at multiple locations and for prolonged time periods. Our 

analysis of average weekly pedestrian activity patterns at signalized intersections across Utah 

highlights some similarities as well as differences between various typologies. Expected daily 

and weekly traffic patterns—lower activity overnight and on weekends—appear in all 

typologies. The magnitude of pedestrian activity across locations is skewed, with many low, 

some medium, and just a few intersections having very high levels. More interesting are the daily 

differences: Most intersections have somewhat uniformly high/medium/low levels of midday 

pedestrian activity (~1% of weekly totals per hour), while some others clearly exhibit an AM and 

a larger PM peak hour (2–3% of weekly totals) on weekdays. To the extent that these typologies 

are applicable to other states, this information is useful for understanding detailed spatiotemporal 

patterns in walking behavior.  

A novel contribution of our study is using both magnitude (counts) and weekly patterns in 

identifying typologies by combining results from two clustering results. Previous studies related 

to factor groups assume same factors for locations having similar weekly patterns. In our study, 

we find that although some intersections have similar weekly patterns (such as Type I, Type II, 

Type V), there are considerable differences in magnitude of counts. Hence, future studies might 

note the methodological extension of the study and capture similarities in both magnitude as well 

as weekly patterns when employing clustering approaches. Additionally, we developed different 

PAMs for our analysis, and pedestrian calls registered (#45s) was found to be most efficient in 

producing clusters that are distinct and compact, which could be used as a guide in practitioners 

pursuing further research on pedestrian push-buttons.  
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Two approaches, empirical clustering (EC) and land-use-based (LU) methods discussed 

in relevant literature, have been applied to a very low number of count locations/intersections 

(<500). The trend in pedestrian data is shifting towards “big data” collected through pedestrian 

push-buttons (as in our case) or any form of crowd-sourced data. Hence, it is important to 

acknowledge the viability of both of these classification approaches. In the case of big data, the 

LU classification approach, which requires knowledge of attributes around the count sites, might 

be infeasible, and time-consuming. Besides, it is difficult to classify locations with mixed use 

characteristics (i.e., locations not typically conforming to existing categories such as CBD, 

school, commercial, etc.) Our study shows that the EC approach could be used for group 

intersections, and secondly it can also capture the surrounding land use variations 

simultaneously. 

5.2.2  Methods to Estimate Pedestrian Volumes from Traffic Signal Data 

In this project, we examined and validated the use of pedestrian data from high-resolution 

traffic-signal controller logs against observed pedestrian counts, and developed methods that use 

pedestrian signal data to estimate pedestrian crossing volumes. Specifically, we estimated five 

simple non-linear regression models that compared hourly pedestrian-signal activity metrics 

derived from push-button presses against observed pedestrian counts from over 22,000 hours of 

videos recorded in 2019 for 320 crosswalks at 90 signalized intersections in Utah. The model 

estimates were strongly correlated with observed pedestrian crossing volumes (0.84) and had a 

mean absolute error of only 3.0, which is notable given the large sample size and variety of 

locations studied and the few predictors used.  

Model results match expectations considering the interaction between pedestrian 

behavior and signal operations. The (comparably) poorer fits of the models for crossings with 

pedestrian recall results from pedestrians not having to press the push-button to receive the walk 

indication. In situations like this (pedestrian recall, when push-button use is not needed), actuated 

pedestrian calls (A45B) best predict pedestrian crossing volumes. But when push-button use is 

needed (not on pedestrian recall), pedestrian detections (A90C) best predict crossing volumes. It 

makes sense that crossings (on pedestrian recall) at signals with higher pedestrian activity have 

larger coefficients but poorer model fits, since they likely see larger but more variable group 
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sizes, which may make it harder to use pedestrian signal data to predict crossing volumes. It is 

also sensible for crossings (not on pedestrian recall) with longer cycle lengths to have larger 

multipliers, since the increased wait time can allow larger pedestrian platoons to form. 

Overall, the findings from our large-scale validation effort show that traffic-signal big 

data can be successfully used to estimate pedestrian crossing volumes at intersections. This 

conclusion is an incredible boon for research and engineering/planning tasks that rely on 

pedestrian monitoring and pedestrian data collection, especially given the ubiquity of traffic 

signals in the US. If a region has connected traffic signals (with pedestrian push-buttons) and is 

archiving controller log data—as many dozens of agencies throughout the country are doing 

through ATSPM systems—this research immediately opens up these active sensors as a source 

of pedestrian big data that is available continuously (in time) and for as many locations as there 

are signals.  

5.3  Limitations and Challenges 

Despite the promise of pedestrian signal data, they are not without limitations. Like other 

automatic sensors, they are not perfect measurements of pedestrian volumes, and they are subject 

to outages or contamination due to equipment malfunctions. More fundamentally, they are only a 

potential data source at signals with pedestrian push-buttons and where pedestrian actuation is 

sometimes or always required to get the walk indication. Many downtown areas and older cities 

do not have or require the use of push-buttons at signalized intersections. However, this signal 

configuration is common in suburban locations where information about walking is often scarce. 

Although our models appear to work in the variety of locations and conditions we studied, more 

research could validate their applicability in areas outside of Utah.  

Finally, we would like to note that the ability to estimate pedestrian volumes from traffic 

signal data should not be a justification for making pedestrian crossings actuated (having people 

press the pedestrian push-button). There are many operational reasons to do this, and many other 

reasons to put signal phases on pedestrian recall (and rest in walk). Our view is that this ability is 

a fortunate side -ffect of the standard practice of pedestrian operations at US traffic signals. 
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6.0  RECOMMENDATIONS AND IMPLEMENTATION 

6.1  Recommendations 

This research directly addresses one of UDOT’s “top 10” goals: for real-time full 

situational awareness of the performance and operation of Utah’s transportation system. UDOT 

is a national leader in developing and deploying the ATSPM system for real-time management 

and archived performance assessment of traffic signals throughout the state. Although these 

systems record pedestrian actuations and include a pedestrian delay performance measure, little 

else is done with these data. This project collected true pedestrian counts and successfully 

validated the signal actuations, in the process developing methods to estimate pedestrian 

volumes and thus glean more information from these data, extending their usefulness into the 

planning realm. Overall, improved estimates of pedestrian activity can be used for traffic signal 

operations and timing, pedestrian traffic safety analyses, and health assessments, all of which 

help to promote UDOT’s mission of enhancing quality of life.  

Because UDOT is a leader in ATSPM, validating pedestrian actuation data and 

investigating the applicability of these data for pedestrian planning and analysis will be useful for 

DOTs in the rest of the country. Agencies in other states may be able to borrow the measures and 

methods used (or developed) in this research project to utilize pedestrian-signal actuation data 

for improved pedestrian planning in their own jurisdictions.  

There are many potential uses of pedestrian signal data and the models developed in this 

research project. Investments in pedestrian infrastructure (such as sidewalks and improved 

crossings) can be prioritized in areas with higher levels of pedestrian activity. Pedestrian 

volumes can be used as a measure of exposure in safety studies to more accurately identify 

pedestrian crash risk factors or evaluate the effectiveness of a safety treatment. They could also 

be associated with attributes of the surrounding area to identify stronger (and temporal variations 

in) built environment relationships with walking, thus informing the design of walk-friendly 

communities. Level-/quality-of-service calculations require pedestrian flow rates. Temporal 

patterns in pedestrian signal detection can offer guidelines for reconfiguring traffic signal 

operations for pedestrians, such as implementing pedestrian recall, leading pedestrian intervals, 
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no right turns on red, or even pedestrian scrambles (Barnes dances). This information could be 

correlated with weather and air-quality data to learn more about how atmospheric and 

environmental conditions affect pedestrian behaviors, or tracked over time to notice changes due 

to major events, natural disasters, or outbreaks of infectious diseases. Pedestrian traffic signal 

data can also be used to develop improved temporal factors and factor groups that allow for the 

extrapolation of short-duration pedestrian counts into average pedestrian volumes.  

6.1.1  Future Research 

We envision several potentially fruitful avenues for future research. First, it would be 

useful to validate the models and methods developed in this project both in other states (cross-

sectionally) and ongoing (over time). Although our approach validated the use of traffic signal 

data as a reasonably accurate data source to predict pedestrian-intersection crossing volumes 

using orders-of-magnitude more data than had previously been collected, regression methods like 

those employed in this research can be subject to overfitting, thus yielding slightly less accurate 

predictions when applied in new situations (other locations not studied) or in the future (due to 

behavioral changes). Thus, conducting a similar data collection and validation process in other 

states would determine the generalizability of the project’s key findings and products to other 

locations and contexts outside of Utah. We expect our models to perform fairly well in other 

contexts, but there could be a few special circumstances where they are not as appropriate. We 

also recommend that the findings should be validated with periodic additional data collection, 

even within Utah. Doing some modest data collection (at 5-10 locations, perhaps every 5 years) 

and comparison of pedestrian signal data against observed pedestrian crossings will ensure that 

the factors and methods remain valid into the future. This work is especially important during 

and after major disruptions—like the coronavirus pandemic—that have the potential to change 

pedestrian behaviors. Similarly, if traffic signal operations change significantly, then similar 

validation work should be done.  

Although we hope our prototype visualizations are useful, more research could be done to 

determine the desired functionalities and user interactivity needs from a diverse set of pedestrian 

data users. This research would involve several rounds of user testing with stakeholders, to 

develop potential ways to quantify and visualize pedestrian data. For example, people working in 
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traffic signal operations need to be able to drill down to individual crossings and specific hours 

on particular days, to understand how pedestrians are interacting with the traffic signal. On the 

other hand, transportation planners may want more averaged and aggregated data and the ability 

to compare pedestrian volumes at different times of time, days of the week, or seasons. These 

diverse needs may require different types of user interfaces, customized to each set of potential 

applications of pedestrian signal data.  

Finally, we think that this work will open up new avenues of transportation research, 

especially in areas that were lacking for pedestrian volume data. Research on pedestrian safety 

requires measures of pedestrian “exposure” to traffic (exposure is usually measured as volumes), 

but pedestrian exposure data for safety analysis often must rely on short-duration counts or 

proxies (e.g., neighborhood socio-demographics). Research on the built environment correlates 

of walking activity also suffers from a lack of long-term data on pedestrian volumes. Due to the 

temporal coverage of traffic signal data (collected continuously over long time periods), we 

expect that pedestrian signal data will help to identify associations between pedestrian activity 

and shorter-term (e.g., daily or hourly) measures of weather and air quality, to better understand 

behavioral sensitivities to temperature, precipitation, and air pollution. Finally, the empirical 

clustering method we applied to develop typologies of pedestrian activity could be adapted to 

help develop pedestrian factor groups for improved pedestrian travel monitoring. Such work to 

identify similar patterns and expansion factors would improve the ability to convert short-

duration (e.g., peak hour) pedestrian counts into estimates of annual average daily pedestrian 

volumes at many locations.  

6.2  Implementation Plan 

Currently, our procedures for processing pedestrian traffic signal data, applying the 

regression models to estimate pedestrian crossing volumes, and visualizing these data have been 

implemented on local machines using manually-downloaded ATSPM data and customized 

scripts coded in the open-source programming language R. (See Appendix B.) In order to fully 

implement the products of this research (regression models and interactive visualizations), 

several general steps are needed.  
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First, the linkages between the ATSPM traffic signal data, the processing scripts, and the 

visualizations needs to be automated. Currently, our R scripts take manually downloaded high-

resolution traffic-signal controller log data, clean and process the data, apply the regression 

models, and save the output for later visualization. Other visualization scripts then query those 

saved pedestrian data for displaying in the user interfaces. Ideally, scripts would directly query 

(at pre-determined intervals, such as every hour, day, or week) the ATSPM data server, process 

those data in the background, and perhaps save the (processed and somewhat aggregated) results 

in one or a set of intermediate pedestrian databases. The user interfaces could then query the 

intermediate pedestrian databases much faster on demand. All of this work would involve the 

deployment of servers to host the intermediate pedestrian databases, websites for the interactive 

user interfaces, and the processing scripts that can communicate with the ATSPM data server. 

Although this could be integrated into the existing ATSPM system, we envision a broad set of 

potential users and uses, so a separate (linked) system could be useful.  

Second, the processing scripts could be improved in several ways. For one, R is likely not 

the most efficient programming language for rapidly processing large quantities of data. 

Converting our existing R scripts and processes into other programming languages (such as 

Python) could make the procedures more efficient. Also, we need to develop better algorithms 

for measuring pedestrian traffic-signal data quality and identifying missing or erroneous data. 

Data could be missing (for an entire signal, or for a particular crossing) in various time periods 

due to gaps in connectivity, malfunctioning equipment, or maintenance and construction work. 

Alternatively, malfunctioning push-buttons could send false signals of pedestrian activity. 

Distinguishing an hour of missing data from an overnight hour with no traffic can be 

challenging, as can be distinguishing a stuck push-button from the true activity of a large 

pedestrian crowd. If data are not carefully cleaned, estimates of pedestrian volumes could be 

biased (too high or too low). We developed some ad-hoc methods to detect missing data, but 

these rely on subjective time-difference calculations and may be too sensitive when actual 

volumes are low. At this time, we have not developed automated methods to detect erroneous 

(stuck push-button) data. These tasks are necessary to fully and accurately implement the 

methods and tools developed through this research project.  
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APPENDIX A: LIST OF TRAFFIC SIGNALS USED IN VIDEO DATA COLLECTION 

Table A.1 List of Signalized Intersections Studied with Video Data Collection 

Signal 

ID Street E/W Street N/S City 

1021 1300 S 300 W Salt Lake City 

1045 700 S Main St Salt Lake City 

1094 South Temple "I" St / 700 E Salt Lake City 

1225 800 S 1300 E Salt Lake City 

1229 2100 S 1300 E Salt Lake City 

1801 South Temple 50 E (HAWK) Salt Lake City 

1803 800 S 1250 E (HAWK) Salt Lake City 

4011 3900 S 2300 E Salt Lake County/Holladay 

4020 3900 S 210 W South Salt Lake/Salt Lake 

County 

4024 Fort Union Blvd (6910 S) 1300 E Cottonwood Heights 

4130 6200 S Jordan Canal Rd / 

Margray Dr (1950 W) 

Taylorsville 

4158 Highland Dr (14700 S) Minuteman Dr (100 W) Draper 

4301 Fort Union Blvd (7000 S) Union Park Ave (1090 

E) 

Midvale/Cottonwood Heights 

4406 7755 S/Forbush Ln 1300 E (Union Park 

Ave) 

Sandy/Cottonwood Heights 

4502 3100 S Constitution Blvd (2700 

W) 

West Valley City 

4511 4100 S 3200 W West Valley City 

4522 3100 S Decker Lake Dr (2210 

W) 

West Valley City 

4662 Herriman Pkwy (12600 

S) 

Herriman Main St (5100 

W) 

Herriman 

4895 New Bingham Hwy 

(8200 S) 

4800 W West Jordan 

5024 24th St Washington (US-89) Ogden 

5030 12th St (SR-39) Washington (US-89) Ogden 

5053 36th St Harrison Blvd (SR-203) Ogden 

5093 4800 S 1900 W (SR-126) Roy 

5108 Antelope Dr (2000 N) Hill Field Rd (SR-232) Layton 

5170 200 N (SR-273) Main St (SR-273) Kaysville 

5179 Washington (US-89) Harrison Blvd (SR-203) South Ogden 

5221 205 S (SR-193) 2000 W (SR-108) Syracuse 

5260 Syracuse JHS HAWK 2000 W (SR-108) Syracuse 

5299 Main St (SR-142) US-91 (200 W) Richmond 

5305 200 N (SR-30) Main St (US-89 / US-91) Logan 

5306 400 N (US-89) Main St (US-89 / US-91) Logan 

5311 1400 N Main St (US-91) Logan 
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Signal 

ID Street E/W Street N/S City 

5315 600 S 1000 W (SR-252) Logan 

5330 1700 S / 800 W US-89/US-91 Logan 

5332 1200 S Main St (SR-165) Logan/Providence 

5349 2600 S (SR-93) US-89 Woods Cross/North Salt 

Lake/Bountiful 

5363 400 N (SR-106) 500 W (US-89) Bountiful/West Bountiful 

5393 Antelope Dr (1700 S / 

SR-127 / SR-108) 

2000 W (SR-108) Syracuse 

5618 Gentile St Flint St Layton 

5624 Wasatch Dr Fairfield Rd Layton 

5702 500 S Main St Bountiful 

6038 Pioneer Crossing (SR-

145) 

2300 W (9550 W) Lehi 

6047 Arrowhead Trail Rd (SR-

164) 

Main St (SR-198) Spanish Fork 

6078 Pony Express Pkwy Redwood Rd (SR-68) Saratoga Springs 

6125 Main St (US-40) Vernal Ave (US-191) Vernal 

6146 Cory Wride Hwy (SR-

73) 

Ranches Pkwy Eagle Mountain 

6168 1400 S SR-198 Payson 

6303 800 N (SR-52) State St (US-89) Orem 

6307 800 N (SR-52) Palisade Dr Orem 

6393 1600 N State St (US-89) Orem 

6407 Center St University Ave (US-189) Provo 

6436 550 W/2230 N University Pkwy (SR-

265) 

Provo 

6446 1230 N (Bulldog) / 

Columbia Ln 

500 W (US-89) Provo 

7041 South Campus Dr (SR-

282) 

1725 E Salt Lake City 

7060 3500 S (SR-171) Bangerter Hwy (SR-154) West Valley City 

7086 North Temple Redwood Rd (SR-68) Salt Lake City 

7099 2320 S Redwood Rd (SR-68) West Valley City 

7110 5400 S (SR-173) CFI 

Master 

Redwood Rd (SR-68) Taylorsville 

7119 12600 S (SR-71) Redwood Rd (SR-68) Riverton 

7126 South Temple 300 W (US-89) Salt Lake City 

7160 5300 S (SR-173) State St (US-89) Murray 

7164 6400 S (Winchester) State St (US-89) Murray 

7184 900 S 700 E (SR-71) Salt Lake City 

7218 Wakara Wy Foothill Blvd (SR-186) Salt Lake City 

7285 3500 S (SR-171) 3200 W West Valley City 

7328 5400 S (SR-173) 4015 W Salt Lake 

County/Taylorsville 
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Signal 

ID Street E/W Street N/S City 

7332 5400 S (SR-173) 2200 W TSC - Flex 

Lanes 

Taylorsville 

7355 13800 S Bangerter Hwy (SR-154) Draper 

7381 3500 S (SR-171) 5600 W (SR-172) West Valley City 

7382 4100 S 5600 W (SR-172) West Valley City 

7464 5415 S (SR-173) 4420 W Salt Lake County 

7475 50 S HAWK 300 W (US-89) Salt Lake City 

7511 13400 S SR-85 NB (Mountain 

View) 

Riverton 

7610 5415 S (SR-173) 4800 W Salt Lake County 

7622 11400 S (SR-175) Redwood Rd (SR-68) South Jordan 

7719 HAWK (Homestake Rd) Park Ave (SR-224) Park City 

7812 2000 N SR-36 (Main St) Tooele 

8105 Sunset Blvd (SR-8) Dixie Dr St. George 

8113 Main St/Hilton Dr Bluff St (SR-18) St. George 

8117 St. George Blvd (SR-34) Main St St. George 

8119 St. George Blvd (SR-34) 400 E St. George 

8124 St. George Blvd (SR-34) Red Cliffs Dr / River Rd St. George 

8208 200 N (SR-56) Main St (SR-130) Cedar City 

8222 200 N (SR-56) I-15 NB Ramps/1225 W Cedar City 

8302 Center St Main St (US-191) Moab 

8601 100 S Main St St. George 

8627 850 N 3050 E St. George 

8634 Brigham Rd River Rd St. George 

8725 Pioneer Pkwy Rachel Dr Santa Clara 

8828 Red Cliffs Dr / Telegraph 

St 

Green Springs Dr Washington 
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APPENDIX B: LIST OF ASSOCIATED DATA, SCRIPTS, AND DOCUMENTATION 

The following datasets, scripts, and associated documentation are made available to 

UDOT as part of the deliverables of this project. Included in a Data_Scripts folder are the 

following (with information files containing more details):  

• Typologies: Scripts, data, and results of the cluster analysis to identify patterns 

(typologies) of pedestrian activity at traffic signals.  

• Example Data Collect: Example scripts, raw data, video, and combined data showing 

how to collect and process pedestrian event data and combine it with signal data.  

• Data: Data collected and assembled, including about videos, pedestrian crossing events, 

and combined with signal data.  

• Models: Scripts, data, and results of the regression modeling to develop (factoring) 

methods to estimate pedestrian volumes from signal data.  

• Example Apply Models: Example scripts, data, and results of applying the regression 

models to raw signal data and estimating pedestrian volumes.  

• Visualization: Scripts, data, and interfaces that create a prototype to visualize pedestrian 

signal activity.  

These scripts were written in R. To use, download R (https://cloud.r-project.org/) and 

then download RStudio (https://rstudio.com/products/rstudio/download/#download). Then, 

follow additional instructions in each folder.  

 

https://cloud.r-project.org/
https://rstudio.com/products/rstudio/download/#download
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